FLUXNET 2015版本的FULLSET数据产品包括数据产品的所有变量,包括所有质量和不确定性变量,以及来自数据处理管道中中间数据处理步骤的一些选定变量。
ERAI Data Product
辅助数据产品,包含使用ERA临时再分析数据产品(详细信息请参阅有关数据处理管道的文件)缩小规模的微气象变量(与现场测量变量相关)的完整记录(1989-2014年)。
AUXMETEO Data Product
辅助数据产品,包含使用ERA临时再分析数据产品缩小微气象变量的结果。此文件中的变量与缩减中使用的每个数据变量的线性回归和误差/相关性估计相关。
Variables (see list below): TA, PA, VPD, WS, P, SW_IN, LW_IN, LW_IN_JSB
Parameters:
Parameters:
- ERA_SLOPE: slope of linear regression线性回归的斜率
- ERA_INTERCEPT: intercept point of linear regression线性回归的截取点
- ERA_RMSE: root mean square error between site data and downscaled data站点数据和降尺度数据之间的均方误差
- ERA_CORRELATION: correlation coefficient of linear fit (R-Squared == ERA_CORRELATION * ERA_CORRELATION)
-
AUXNEE Data Product
- 包含NEE处理(主要与USTAR过滤相关)以及RECO和GPP生成产生的变量的辅助数据产品。本产品中的变量包括USTAR过滤方法执行的成功/失败、应用于不同版本变量的USTAR阈值以及具有最佳模型效率结果的百分位/阈值对。
-
Variables:
- USTAR_MP_METHOD: Moving Point Test USTAR threshold method run
- USTAR_CP_METHOD: Change Point Detection USTAR threshold method run
- NEE_USTAR50_[UT]: NEE using 50-percentile ofUSTAR thresholds from bootstrapping at USTAR filtering step using method UT (CUT, VUT)
- NEE_[UT]_REF: Reference NEE, using model efficiency approach, using method UT (CUT, VUT)
- [PROD]_[ALG]_[UT]_REF: Reference product PROD (RECO or GPP), using model efficiency approach, using algorithm ALG(NT, DT) for partitioning and method UT (CUT, VUT)
- SUCCESS_RUN: 1 if run of method (USTAR_MP_METHOD or USTAR_CP_METHOD) was successful, 0 otherwise
- USTAR_PERCENTILE: percentile of USTAR thresholds from bootstrapping at USTAR filtering step
- USTAR_THRESHOLD: USTAR threshold value corresponding to USTAR_PERCENTILE
- [RR]_USTAR_PERCENTILE: percentile of USTAR thresholds from bootstrapping at USTAR filtering step at resolution RR (HH, DD, WW, MM, YY)
- [RR]_USTAR_THRESHOLD: USTAR threshold value corresponding to USTAR_PERCENTILE at resolution RR (HH, DD, WW, MM, YY)
Variables in the FULLSET Data Product (all variables)
TA 温度 MDS应该是一种数据质量控制方法 ERA是用ERA再分析的数据 _QC质量控制指数
SW短波辐射 LW长波辐射 VPD水汽压差(这是和饱和水气压作差吗?)
DD 半小时平均 WW-YY日数据平均
_F的一般是经过两种资料结合的一个数据
| TA_F_MDS | deg C | Air temperature, gapfilled using MDS method |
| TA_F_MDS_NIGHT | deg C | Average nighttime TA_F_MDS |
| TA_F_MDS_NIGHT_SD | deg C | Standard deviation for TA_F_MDS_NIGHT |
| TA_F_MDS_DAY | deg C | Average daytime TA_F_MDS |
| TA_F_MDS_DAY_SD | deg C | Standard deviation for TA_F_MDS_DAY |
| TA_ERA | deg C | Air temperature, downscaled from ERA, linearly regressed using measured only site data |
| TA_ERA_NIGHT | deg C | Average nighttime TA_ERA |
| TA_ERA_NIGHT_SD | deg C | Standard deviation for TA_ERA_NIGHT |
| TA_ERA_DAY | deg C | Average daytime TA_ERA |
| TA_ERA_DAY_SD | deg C | Standard deviation for TA_ERA_DAY |
| TA_F | deg C | Air temperature, consolidated from TA_F_MDS and TA_ERA |
| TA_F_NIGHT | deg C | Average nighttime TA_F |
| TA_F_NIGHT_SD | deg C | Standard deviation for TA_F_NIGHT |
| TA_F_DAY | deg C | Average daytime TA_F |
| TA_F_DAY_SD | deg C | Standard deviation for TA_F_DAY |
| SW_IN_POT |
|
Shortwave radiation, incoming, potential (top of atmosphere) |
| SW_IN_F_MDS | W m-2 | Shortwave radiation, incoming, gapfilled using MDS (negative values set to zero, e.g., negative values from instrumentation noise) |
| SW_IN_ERA | W m-2 | Shortwave radiation, incoming, downscaled from ERA, linearly regressed using measured only site data (negative values set to zero) |
| SW_IN_F | W m-2 | Shortwave radiation, incoming consolidated from SW_IN_F_MDS and SW_IN_ERA (negative values set to zero) |
| LW_IN_F_MDS | W m-2 | Longwave radiation, incoming, gapfilled using MDS |
| LW_IN_ERA | W m-2 | Longwave radiation, incoming, downscaled from ERA, linearly regressed using measured only site data |
| LW_IN_F | W m-2 | Longwave radiation, incoming, consolidated from LW_IN_F_MDS and LW_IN_ERA |
| LW_IN_JSB | W m-2 | Longwave radiation, incoming, calculated from TA_F_MDS, SW_IN_F_MDS, VPD_F_MDS and SW_IN_POT using the JSBACH algorithm (Sonke Zaehle) |
| LW_IN_JSB_ERA | W m-2 | Longwave radiation, incoming, downscaled from ERA, linearly regressed using site level LW_IN_JSB calculated from measured only drivers |
| LW_IN_JSB_F | W m-2 | Longwave radiation, incoming, consolidated from LW_IN_JSB and LW_IN_JSB_ERA |
| VPD_F_MDS | hPa | Vapor Pressure Deficit, gapfilled using MDS蒸汽压差 |
| VPD_ERA | hPa | Vapor Pressure Deficit, downscaled from ERA, linearly regressed using measured only site data |
| VPD_F | hPa | Vapor Pressure Deficit consolidated from VPD_F_MDS and VPD_ERA |
| PA |
|
Atmospheric pressure |
气压的单位是KPa ,注意!
| P | mm | Precipitation |
| WS | m s-1 | Wind speed风速 |
| WD | Decimal degrees十进制度 | Wind direction风向 |
| RH | % | Relative humidity, range 0-100 |
| USTAR | m s-1 | Friction velocity |
| NETRAD | W m-2 | Net radiation |
| PPFD_IN | µmolPhoton m-2 s-1 | Photosynthetic photon flux density, incoming光合光子通量密度?入射 |
| PPFD_DIF | µmolPhoton m-2 s-1 | Photosynthetic photon flux density, diffuse incoming光合光子通量密度,入射 |
| PPFD_OUT | µmolPhoton m-2 s-1 | Photosynthetic photon flux density, outgoing光合光子通量密度,出射 |
| SW_DIF | W m-2 | Shortwave radiation, diffuse incoming |
| SW_OUT | W m-2 | Shortwave radiation, outgoing |
| LW_OUT | W m-2 | Longwave radiation, outgoing |
| CO2_F_MDS | W m-2 | CO2 mole fraction, gapfilled with MDS |
| TS_F_MDS_# | Soil temperature, gapfilled with MDS (numeric index “#” increases with the depth, 1 is shallowest) |
TS 土壤温度 #代表层数,1是最浅层
ENERGY PROCESSING
| G_F_MDS |
|
Soil heat flux |
| LE_F_MDS |
|
Latent heat flux, gapfilled using MDS method |
| LE_CORR |
|
Latent heat flux, corrected LE_F_MDS by energy balance closure correction factor |
| H_F_MDS |
|
Sensible heat flux, gapfilled using MDS method |
| H_CORR |
|
Sensible heat flux, corrected H_F_MDS by energy balance closure correction factor |
| H_CORR_25 |
|
Sensible heat flux, corrected H_F_MDS by energy balance closure correction factor, 25th percentile |
| H_CORR_75 |
|
Sensible heat flux, corrected H_F_MDS by energy balance closure correction factor, 75th percentile |
| H_RANDUNC |
|
Random uncertainty of H, from measured only data |
NET ECOSYSTEM EXCHANGE
| NIGHT | Flag indicating nighttime interval based on SW_IN_POT | |
| HH | nondimensional | 0 = daytime, 1 = nighttime |
| NIGHT_D | Number of half hours classified as nighttime in the period, i.e., when SW_IN_POT is 0 |
| DAY_D | Number of half hours classified as daytime in the period, i.e., when SW_IN_POT is greater than 0 |
| NEE_CUT_REF | Net Ecosystem Exchange, using Constant Ustar Threshold (CUT) across years, reference selected on the basis of the model efficiency (MEF). The MEF analysis is repeated for each time aggregation | |
| HH | umolCO2 m-2 s-1 | |
| DD | gC m-2 d-1 | calculated from half-hourly data |
| WW-MM | gC m-2 d-1 | average from daily data |
| YY | gC m-2 y-1 | sum from daily data |
| NEE_VUT_REF | Net Ecosystem Exchange, using Variable Ustar Threshold (VUT) for each year, reference selected on the basis of the model efficiency (MEF). The MEF analysis is repeated for each time aggregation净生态系统交换,使用跨年度的恒定Ustar阈值(CUT),基于模型效率(MEF)选择参考。MEF分析对每个时间聚合重复进行。?这个关于生态的我不太懂了,之后如果相关研究我再看这个,以下省略相关变量 |
GPP Gross Primary Production 总初级生产力
RECO Ecosystem Respiration 生态系统呼吸
FLUXNET2015文章翻译
摘要
FLUXNET2015 数据集提供了全球 212 个站点的生态系统规模的二氧化碳、水和能量交换数据,以及其他气象和生物测量数据(涵盖超过 1500 个站年,截至 2014 年)。这些独立管理和运营的站点自愿贡献数据以创建全球数据集。数据经过质量控制和统一方法处理,以提高各站点之间的一致性和可比性。该数据集已被用于多个应用中,包括生态生理学研究、遥感研究以及生态系统和地球系统模型的开发。FLUXNET2015 包括衍生数据产品,如填补缺口的时间序列、生态系统呼吸和光合作用吸收估计、不确定性估计以及关于测量的元数据,这些数据在本文中首次呈现。此外,这 206 个站点首次以创意共享(CC-BY 4.0)许可证进行分发。本文详细介绍了这一增强数据集及其处理方法,这些方法现在以开源代码的形式提供,使数据集更加可访问、透明和可重复。
背景和总结
过去三十多年来,涡旋协方差技术¹被用于全球范围内的测量站,研究和确定生态系统和气候系统的功能和轨迹,通过这一技术可以测量陆地与大气之间的温室气体和能量交换。该技术能够以高时间分辨率和生态系统水平对这些通量进行非破坏性测量,使其成为一种独特的工具。基于对垂直风速和标量(CO₂、H₂O、温度等)的高频(10–20 Hz)测量,该技术提供了对标量在测量点周围几百米范围内源区足迹面积的净交换量估计。
首先运营的几处一致性测量站投入使用后,欧洲²和美国³⁴陆续建立了区域站点网络,此后其他大陆也相继推出了类似计划⁵⁶⁷。这些网络使得涡旋协方差数据的应用超越了单一站点或生态系统,实现了跨站点比较和区域到全球范围内的研究⁸⁻¹⁵。这些区域网络发展成为长期的研究基础设施或监测活动,如ICOS、AmeriFlux、NEON、AsiaFlux、ChinaFLUX和TERN-OzFlux。
FLUXNET作为一个全球网络的网络¹⁶⁻¹⁸诞生,是区域网络之间的一项联合努力,旨在协调和提高数据收集标准化水平。它使得全球涡旋协方差数据集的创建成为可能。第一套包含填补缺口的全球FLUXNET数据集于2000年发布,名为Marconi数据集¹⁹,其包含97个站年数据,并引入了光合作用和呼吸等分区通量等衍生数据,随后2007年发布了LaThuile数据集²⁰,包含965个站年数据,最后于2015年发布了FLUXNET2015数据集¹⁸²¹(以下简称FLUXNET2015),包含1532个站年数据。每个数据集包含的站点和年数受到两个主要因素的限制:数据政策和数据质量。愿意在所选数据政策下共享数据是FLUXNET2015很可能仅包含全球现有站点的10–20%的主要原因——现有站点的总数仍然未知。其次是数据处理管道和质量控制的演进,导致在数据中识别出新的问题,如果及时未能解决,这些数据将被排除在外。LaThuile数据集的数据政策更为严格,并在某些情况下发现了先前未发现的数据问题,导致FLUXNET2015包含的站点数量较少。
FLUXNET2015首次包含了记录时间超过二十年的站点数据(图1)。该数据集通过许多区域网络的合作创建,数据准备工作在站点、区域网络和全球网络水平上进行。数据准备活动的全球协调和数据处理由AmeriFlux管理项目(AMP)、欧洲生态系统通量数据库和ICOS生态系统主题中心(ICOS-ETC)团队负责。该团队负责编码工作、质量检查和数据处理管道的执行。这些共同努力导致了一个标准化的数据集,标准化的方面包括(1)数据产品本身,(2)数据分发格式,以及(3)各站点的数据质量。这些数据集在全球合成和建模活动中的广泛应用凸显了其价值。然而,数据的异质性——主要由数据收集、通量计算和提交前数据整理的差异引起——突显了数据不确定性估计和统一数据质量评估的必要性。
本文包含的206个塔站地图,这些塔站选自于FLUXNET2015数据集2020年2月发布的212个站点。圆圈大小表示数据记录的长度,圆圈颜色代表生态系统类型,依据国际地圈-生物圈计划(IGBP)定义。重叠时,位置略微偏移以提高可读性。括号内的数字表示每个IGBP组的站点数量。插图显示数据记录长度的分布。见补充图SM4可获取澳大利亚、欧洲和北美洲的continental尺度地图。
该数据处理管道采用了成熟且发表的方法,同时也实施了新的代码,并从社区提供的实施中调整了代码。该管道的主要产品包括:(1)全面的数据质量控制检查;(2)计算一系列摩擦速度阈值,用于过滤低湍流时期,从而能够同时估算此次过滤引起的不确定性和随机不确定性;(3)对气象和通量测量进行缺测填补,其中包括使用降尺度再分析数据产品来填补气象变量的长时间缺失;(4)使用三种不同的方法将二氧化碳通量划分为呼吸和光合作用(总初级生产力)组件;以及(5)计算能量通量的校正因子,以估算该站点能量收支闭合的偏差。本管道的两个特点是摩擦速度阈值的范围以及用于划分二氧化碳通量的多种方法。这两种特点都支持对处理步骤本身引入的不确定性进行更全面评估。我们对该管道的实现以名为ONEFlux(开放网络启用通量处理管道)的开源代码包的形式公开。 本文的目标是描述FLUXNET2015及其附加产品,介绍该处理管道的详细信息,并记录生成该数据集所采用的方法。通过此举,FLUXNET数据的最终用户社区将获得必要的技术和实践知识,以充分发挥FLUXNET数据的潜力,包括FLUXNET2015版本发布的数据,以及自发布后提交至网络的数据。
数据处理方法
FLUXNET2015中包含的数据是由各站点团队提交的,涵盖了通量、气象、环境和土壤时间序列数据,且这些数据的时间分辨率为半小时或一小时。提交的数据经过了统一的数据质量控制流程,数据问题在与站点团队协商后得到解决。随后,数据通过本节所述的处理管道(图2)进行处理。生成的数据产品通过FLUXNET-Fluxdata网页门户23进行分发,通过注册所有请求并提供使用者的详细信息来追踪数据集的使用情况。这些信息对于更好地理解用户需求以及数据集的影响至关重要。
FLUXNET2015数据处理步骤的逻辑(文本中不同步骤的详细内容及缩写词的含义)。
数据来源
首级数据处理由各站点团队完成,包括从高频风和浓度测量计算半小时或小时湍流通量、对时间分辨率较短的气象变量进行平均,以及站点团队自身的质量控制程序。提交的通量数据需分开为湍流通量和储存通量(总通量的组成部分)单独提交,并未对低湍流条件进行缺测填补或过滤——详见Aubinet等人24的研究。实施了控制检查以确保如此处理,并检测其他不一致性问题以要求站点团队解决,例如时间戳的一致性、相关变量间的连贯性等25。从这些数据出发,我们对所有其余处理步骤(从过滤到缺测填补和划分)应用了相同的方法集,提高了统一性,并允许量化处理引起的不确定性。数据的协调统一——尤其是数据质量的统一——在创建数据集时是重中之重,因此需要与站点团队进行大量互动。数据通过区域网络提交,并将网络提供的格式转换为标准化输入用于处理。这一FLUXNET数据集促成了一个新的跨网络规范,用于标准站点数据和元数据提交格式,该规范现已被不同区域网络采用。
数据处理流水线概述
数据处理流水线(图2)分为四个主要处理模块。第一个模块是我们团队对所有站点数据应用的数据质量保证与质量控制(QA/QC)活动。这一部分结合了自动化程序和手动检查,适用于所有提交的变量。接下来的三个模块均属于自动化处理流水线,分别为每个站点单独执行:能量与水分量处理模块涵盖了感热和潜热变量;碳通量处理模块处理二氧化碳通量变量,如净生态系统交换(NEE);气象变量处理模块处理所有气象测量,这些测量也用于通量和其他产品的处理。在每个处理步骤中,强制执行一套自动化的前置和后置条件,确保每个步骤的输入和输出符合预期行为。最后一步涉及合并前一步生成的所有产品,并添加从日到年的时间聚合,最多变量的数据集和相关质量标志。该步骤执行了所有变量的一致性自动检查,并创建了所有提交和生成的数据产品的最终文件,以便分发。补充图SM2展示了处理流水线中按代码序列组织的总体步骤,该流水线在ONEFlux包22中公开。所有步骤均已在共享代码中实现,唯独日落划分法(见实施方法部分详细内容)。
结果合集
采用多种方法处理同一处理步骤(例如,计算USTAR阈值的两种方法,或用于划分二氧化碳通量的两种或三种方法,详见本节下文)是由于文献中存在不同的方法,这些方法使用了不同的假设并可能产生不同的结果26,27。一方面,这种方法的不统一可能对合成研究构成问题。另一方面,采用单一方法可能导致偏差,并低估方法学中的不确定性。我们采用的方法同时采用了多种方法,允许创建一个合集,帮助评估不确定性,并评估单个方法对站点条件的适用性。
数据质量保证与控制
在生成衍生数据产品(此后称为后处理)的处理之前,各站点的数据需通过Pastorello等人25提出的QA/QC检查。数据集中的所有变量均进行了检查,而关键变量则接受了进一步的审查。这些额外的检查针对的是处理至关重要的变量,例如通量变量、用于缺测填补的气象变量,以及不确定性估算程序使用的变量。对于关键变量存在待解决问题的站点,处理将不继续进行。
后处理的关键元数据变量:
站点的FluxID,形式为CC-SSS(两个字符的国家代码,三个字符的国家内站点标识符)–例如,US-Ha1
站点的经纬度,以WGS 84十进制格式表示,分辨率至少为四位小数–例如,42.5378/−72.1715
站点的时区(时间序列,如果时区发生变化;时间戳均为当地标准时间,无夏令时)–例如,UTC-5
气体分析仪的高度–例如,30.0 米
后处理的关键数据变量,平均或积分为30或60分钟(*表示必填):
*CO2 (µmolCO2 mol−1):湿空气中的二氧化碳(CO2)摩尔分数
*FC (µmolCO2 m−2 s−1):二氧化碳(CO2)湍流通量(不包含储存组件)
*SC (µmolCO2 m−2 s−1):使用垂直剖面系统测量的二氧化碳(CO2)储存通量,若塔高短于3米可选
*H (W m−2):感热湍流通量,不含储存校正
*LE (W m−2):潜热湍流通量,不含储存校正
*WS (m s−1):水平风速
*USTAR (m s−1):阻力速度
*TA (deg C):空气温度
*RH (%): 相对湿度(范围0–100%)
*PA (kPa): 大气压
G (W m−2): 地面热流,不强制要求,但需要用于能量平衡闭合计算
NETRAD (W m−2): 网辐射,不强制要求,但需要用于能量平衡闭合计算
*SW_IN (W m−2): 入来短波辐射
SW_IN_POT (W m−2): 入来短波辐射的潜在值(大气顶部理论最大辐射),基于站点坐标计算22
PPFD_IN (µmolPhotons m−2 s−1): 入来光合作用光子通量密度
P (mm): 每30或60分钟的降水总量
LW_IN (W m−2): 入来(下行)长波辐射
SWC (%): 土壤含水量(体积含水量),范围0–100%
TS (deg C): 土壤温度
文件格式标准化
为了处理数百个站点的数据,我们需要一致的文件格式来支持输入数据和元数据。这导致了多网络协议的达成,并为数据和元数据向区域网络贡献创建了格式28,29。这些格式已被欧洲和美洲的网络以及一些仪器制造商采用,并被其他区域网络考虑中。此外,为了直接格式转换,实施了自动化提取和转换工具,以便处理旧格式数据。
数据QA/QC步骤
在处理开始前检查了数据质量。如果网络级数据团队无法解决识别出的问题,站点团队将被要求提出处理方案或发送解决质量问题的新数据版本。主要的数据QA/QC步骤包括:单变量检查、多变量检查、专用检查和自动检查。单变量检查逐个查看一变量在时间序列中的模式,长期和短期趋势及其他问题。多变量检查查看相关变量之间的关系(例如,不同辐射变量),以识别存在不一致的时间段。专用检查测试生态和气象数据中常见的问题,如时间戳偏移或传感器退化。在此阶段,使用纬度/经度坐标和时间22,还计算了顶部大气潜在辐射(SW_IN_POT)的时间序列。这三类检查在Pastorello等人25的研究中详细说明。自动检查应用了Papale等人30的反脉冲程序,并对每个变量应用一套范围控制。此最后一步创建了一系列标志,这些标志与站点管理人员讨论以更正和重新提交,然后用于后续步骤的数据过滤。
气象数据产品
对气象数据的主要处理是通过两种独立方法进行缺测填补:边际分布抽样31(MDS)和ERA-Interim32。使用MDS方法填补缺测的数据(适用于所有需要填补的变量)由_F_MDS后缀标识。使用ERA-Interim降尺度方法填补缺测的数据(六个在再分析数据集中可用的变量)有_F_ERA后缀。变量的最终填补时间序列(表示为不带后缀的_F)结合了这两种方法(如下所述),遵循基于数据质量的选择方法。对于SW_IN,如果存在缺测或变量未被测量,我们会在PPFD_IN可用时从其进行计算,通过两者重叠期间的测量计算转换因子(假设传感器未并行运行时为0.48 J (µmol photon)−1)。
MDS
MDS方法引入于Reichstein et al.31,适用于所有可能需要填补缺测的变量。该方法通过寻找物理和时间上与缺失数据点(或多个缺失点)相似的气象条件来实现。逐步放宽时间窗口大小和必须可用的变量,直到找到适合填补目标变量缺测的记录集。所有满足当前条件的目标变量值均取平均以生成填补值。该方法如原始实现31所述使用SW_IN、TA和VPD作为驱动变量进行应用。目标变量缺测时的三种基本场景:(i)所有三个驱动变量均可用;(ii)仅SW_IN可用;(iii)所有三个驱动变量均缺失。根据可用的共位变量,尽可能缩小搜索窗口以避免其他缓慢变化驱动变量(如物候、水分可用性等)的变化。缺测变量越多,时间窗口越大,_F_MDS_QC标志表示的置信度越低。该标志的值范围为(0–3):_F_MDS_QC = 0(测量值);_F_MDS_QC = 1(高置信度填补);_F_MDS_QC = 2(中置信度填补);_F_MDS_QC = 3(低置信度填补)。有关实现细节,请参阅原始论文31和ONEFlux源代码22。
ERA-Interim
该方法基于欧洲中期天气预报中心(ECMWF)创建的ERA-Interim(ERA-I)全球大气再分析产品33,34。适用于与ERA-Interim产品中可用变量的子集,该方法使用站点测量变量进行空间和时间降尺度处理。使用的ERA-I变量包括:2米空气温度(t2m,K),地表入射短波太阳辐射(Sw,W m−2),2米露点温度(dt2m,K),10米水平风速分量(u10和v10,m s−1),总降水量(Pr,m水每时间步),地表入射长波太阳辐射(Lw,W m−2)。缺测填补程序包括单位统一、识别足够长的时间段以建立线性关系、对线性关系进行简单去偏、评估变量子集的日循环,以及对结果的其他评估以识别潜在的缺失或不正确信息(例如,坐标或时间不匹配)。线性关系在考虑瞬时和平均变量的基础上建立,然后应用于整个ERA-I记录,生成基于坐标和日循环的每个变量的空间(基于坐标)和时间(基于日循环)的降尺度版本。该方法如原始实现所述应用,如需了解更多细节,请参阅Vuichard和Papale32。
最终填补产品
使用MDS(_F_MDS_QC < 2)测量或高质量填补记录创建最终填补产品(_F后缀变量,无_MDS或_ERA后缀)。如果变量的低质量填补标志(2或3),则改用ERA-I产品。最终质量标志(_F_QC)为:0表示测量值,1表示使用MDS的高质量填补,2表示使用ERA-I降尺度产品填补缺测。还使用MDS方法(如上所述)生成二氧化碳浓度的填补版本(CO2_F_MDS),包括相应的质量标志。
能量与水分产品
与能量和水分通量相关的主要数据产品是填补版本的数据以及确保能量平衡闭合并估计其不确定性的版本——有关此问题的描述,请参阅Stoy et al.35。湍流能量通量(感热和潜热,分别为H和LE)使用上述MDS方法31进行缺测填补。通过潜热可以计算水分通量(蒸散)。还创建了经过能量平衡校正的LE和H的版本,这是在数据用于模型参数化和验证时常需要的产品,能量平衡闭合在此过程中被规定。目前尚无共识关于如何更正生态测量中的能量平衡不平衡的原因和方法。在此产品中,用于计算能量平衡校正通量的方法基于鲍文比率正确的假设36。通量通过将原始、填补的LE和H数据乘以能量平衡闭合校正因子(EBC_CF,数据集中)进行校正。校正因子从所有变量(测量的NETRAD和G,以及测量或高质量填补的H和LE)均可用的半小时开始计算,如公式(1)所示,但不会直接应用。

First, to avoid transient conditions, the calculated EBC_CF time series is filtered by removing values outside of 1.5 times its own interquartile range. Then, the correction factor used in the calculations is obtained using one of three methods, applied hierarchically (see also diagram in Supplementary Fig. SM3):首先,为避免瞬态条件,通过删除超出其自身四分位距 1.5 倍的值来筛选计算EBC_CF时间序列。然后,使用三种方法中的一种获得计算中使用的校正因子,按层次结构应用(另见补充图中的图表)。SM3):
-
EBC_CF Method 1: For each half-hour, a sliding window of ±15 days (31 days total) is used to select half-hours between time periods 22:00–02:30 and 10:00–14:30 (local standard time). These time-of-day restrictions aim at removing sunrise and sunset time periods, when changes in ecosystem heat storage (not measured) are more significant, preventing energy balance closures. For all half-hours meeting these criteria, the corresponding EBC_CFs are selected and used to calculate the corrected values of H and LE for the half-hour processed (center of the sliding window), generating a pool of values for each of these two variables. From each of these two pools, the 25th, 50th (median), and 75th percentiles are extracted for their corresponding variables, generating the values for H_CORR25, H_CORR, H_CORR75 and LE_CORR25, LE_CORR, LE_CORR75. If fewer than five EBC_CF values are present in the sliding window, Method 2 is used for the half-hour. (Note on temporal aggregations: for DD the sliding window size is ±7 days and the EBC_CF are calculated from the daily average values of G, NETRAD, H and LE. For WW, MM, and YY the EBC_CFs are calculated from corresponding average fluxes of the period analysed, but no percentiles are computed. For WW, MM, and YY, Method 1 fails if less than 50% of half-hours within the window have measured values for all four component variables.)EBC_CF方法 1:对于每个半小时,使用 ±15 天(总共 31 天)的滑动窗口来选择时间段 22:00–02:30 和 10:00–14:30(当地标准时间)之间的半小时。这些时间限制旨在消除日出和日落时间段,此时生态系统储热(未测量)的变化更为显着,从而防止能源平衡关闭。对于满足这些标准的所有半小时,选择相应的EBC_CFs并用于计算所处理的半小时(滑动窗口中心)的 H 和 LE 的校正值,为这两个变量中的每一个生成一个值池。从这两个池中,提取第 25 个、第 50 个(中位数)和第 75 个百分位数作为其相应的变量,从而生成 H_CORR25、H_CORR、H_CORR75 和 LE_CORR25、LE_CORR 和 LE_CORR75 的值。如果滑动窗口中的 EBC_CF 值少于 5 个,则使用方法 2 进行半小时。(关于时间聚合的注意事项:对于 DD,滑动窗口大小为 ±7 天,EBC_CF是根据 G、NETRAD、H 和 LE 的每日平均值计算的。对于 WW、MM 和 YY,EBC_CFs是根据分析期间的相应平均通量计算的,但不计算百分位数。对于 WW、MM 和 YY,如果窗口内少于 50% 的半小时具有所有四个分量变量的测量值,则方法 1 将失败。
-
EBC_CF Method 2: For the current half-hour, EBC_CF is calculated as the average of the EBC_CF values used to calculate the H_CORR and LE_CORR with Method 1 within a sliding window of ±5 days and ±1 hour of the time-of-day of the current timestamp. H_CORR and LE_CORR are calculated and the corresponding _CORR25 and _CORR75 percentiles are not generated. If no EBC_CF is available, Method 3 is used for the current half-hour. (Note on temporal aggregations: differing sliding windows are: DD: ±2 weeks, WW: ±2 weeks, MM: ±1 month, and YY: ±1 year.)EBC_CF方法 2:对于当前半小时,EBC_CF计算EBC_CF为用于计算H_CORR值的平均值,并在当前时间戳的 ±5 天零 ±1 小时的滑动窗口内使用方法 1 LE_CORR。计算 H_CORR 和 LE_CORR,并且不会生成相应的 _CORR25 和 _CORR75 百分位数。如果没有可用的EBC_CF,则当前半小时使用方法 3。(关于时间聚合的注意事项:不同的滑动窗口是:DD:±2 周,WW:±2 周,MM:±1 个月,YY:±1 年。
-
EBC_CF Method 3: An approach like Method 2 is applied but using a sliding window of ±5 days for the same half-hour in the previous and next years, with the current EBC_CF being calculated from the average of the EBC_CF values used to calculate the H_CORR and LE_CORR. H_CORR and LE_CORR are calculated and the corresponding _CORR25 and _CORR75 percentiles are not generated. In case this method also cannot be applied due to missing values, the energy balance closure corrected fluxes are not calculated. (Note on temporal aggregations: differing sliding windows are: DD: ±2 weeks, WW: ±2 weeks, MM: ±1 month, and YY: ±2 years.)EBC_CF方法 3:应用了类似于方法 2 的方法,但对前几年和明年相同的半小时使用 ±5 天的滑动窗口,当前EBC_CF是根据用于计算H_CORR的 EBC_CF 值的平均值计算的,并且计算LE_CORR H_CORR和LE_CORR,并且不会生成相应的 _CORR25 和 _CORR75 百分位数。如果由于缺失值而无法应用该方法,则不会计算能量平衡闭合校正的磁通量。(关于时间聚合的注意事项:不同的滑动窗口是:DD:±2 周,WW:±2 周,MM:±1 个月,YY:±2 年。
H and LE Random UncertaintyH 和 LE 随机不确定度
The random uncertainty for H and LE is also estimated at half-hourly resolution, based on the method introduced by Hollinger & Richardson37 and then aggregated at the other temporal resolutions. The random uncertainty (indicated by the suffix _RANDUNC) in the measurements is estimated using one of two methods, applied hierarchically:H和LE的随机不确定性也是根据Hollinger & Richardson37引入的方法,以半小时分辨率估计的,然后在其他时间分辨率下进行汇总。测量值中的随机不确定性(由后缀 _RANDUNC 表示)使用以下两种方法之一进行估计,并按层次结构应用:
-
H-LE-RANDUNC Method 1 (direct standard deviation method): For a sliding window of ±5 days and ±1 hour of the time-of-day of the current timestamp, the random uncertainty i



最低0.47元/天 解锁文章
4279

被折叠的 条评论
为什么被折叠?



