代码随想录贪心算法文章链接代码随想录
理论:贪心本质是局部最优推出全局最优
and 贪心没有套路练就完事了
455.分发饼干
题目链接https://leetcode.cn/problems/assign-cookies
思路:尽量用大的饼干喂给胃口大的小孩
胃口:1,3,7,10
饼干:1,3,5,9
我们先把胃口数组和小孩数组进行排序,遍历胃口数组,我们把胃口数组从后往前遍历,只要我饼干数组能喂的就给,index--;小孩数count++,如果喂不了我就继续i--往前面找找胃口小的小孩。
这里只能用遍历胃口的数组来进行比较,因为如果从后往前遍历饼干数,我最大的饼干9拿去比发现要10,进行下次循环是饼干往前,那9给不了我1 3 5肯定也给不了。因此这里只能遍历胃口数组
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(s.begin(), s.end());//饼干数组
sort(g.begin(), g.end());//胃口数组
int index = s.size() - 1;//指向饼干数组的下标
int count = 0;//计数能喂给小孩的数量
for (int i = g.size() - 1; i >= 0; i--) {//遍历胃口是i>=0因为从(0,size-1)都要比较
while (index > 0 && s[index] >= g[i]) {//遍历饼干
index--;
count++;
}
}
return count;
}
};
376.摆动序列
题目链接https://leetcode.cn/problems/wiggle-subsequence
我们主要要删除的点是坡度上的点,对有坡度的点进行计数
局部最优:删除坡度上的点
整体最优:有最长的摆动序列
这里的思路是我遍历整个数组,每一轮都算出数组中下一个值和这个值的差curdiff和这个值和数组上一个值的差prediff(这里prediff不用每轮都算,只要坡度变化了我再把prediff的值赋值为curdiff)坡度变化,那计数摆动序列值加加
有二种情况
一、上下坡中有平坡
比如[1,2,2,2,1]的序列
可以整体删掉平坡的左边数,只计数一个
所以我左边坡度prediff == 0,右边坡度无论是上升还是下降我都把这个把这个值计数
二、数组首尾两端
当传入的数组只有两个数的时候题目说是算2的,那为了把这种情况和条件中结合起来,就把result计数为1,把最后一个值看成一个坡,如果传入的是两个值[2,3],你的prediff初始为0,所以2这个点也会进行计数,算出来的result为2
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1)
return nums.size();
int prediff = 0;//前一坡度
int curdiff = 0;//现在这一坡度
int result = 1;
for (int i = 0; i < nums.size() - 1; i++) {
curdiff = nums[i + 1] - nums[i];
if ((prediff <= 0 && curdiff > 0) ||
(prediff >= 0 && curdiff < 0)) {
result++;
prediff=curdiff;//坡度变化后再赋值
}
}
return result;
}
};
53.最大子数组和
题目链接https://leetcode.cn/problems/maximum-subarray
局部最优:连续和已经为负数后就放弃这个值,因为负数只会越加越小。
整体最优:有最大的连续子数组和
思路感觉就是如果我现在相加的值已经为负数了,那就直接把现在存的连续和count赋值为0吧,从新再看看后面的数能不能比result更大(也就是都是负数的话,选个最大的负数就得了,你再加的话越加越小没必要hhh),这道题颇有种哲学意义呀,过去的就让他过去吧,我们从零开始。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result=INT_MIN;
int count=0;
for(int i=0;i<nums.size();i++){
count+=nums[i];
if(count>result)result=count;//只有大于前一个存的最大和再赋值
if(count<0)count=0;//重新赋值
}
return result;
}
};