- 博客(25)
- 收藏
- 关注
原创 面试被拷打系列
在编写类的时候,如果写了__call__()方法,在实例化的对象进行调用的时候就会有实例对象点__call__()和 object()这两种使用方式效果一样的现象,即调用方法一和调用方法二效果一样。是创建一个新对象,其内容是原始对象中所有对象的拷贝。__call __()一般与修饰器一起使用,我们用一个类当作修饰器,则用__call __()魔法方式将一个类的实例化对象变成像函数一样的可调用对象。:如果原始对象中的任何一个对象被修改了,那么浅拷贝中对应的对象也会被修改,因为它们引用的是同一个对象。
2024-11-08 17:57:18 266
原创 《代码随想录》代码合集
代码随想录》算法公开课代码合集提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
2024-11-04 13:35:55 427
原创 ViT面试知识点
VIT是将NLP的transformer迁移到cv领域,他的整个流程大概如下:将一张图片切成很多个patch,每个patch为16x16的大小,然后将这些patch拉直,并添加一个位置编码,然后将这个向量序列输入到标准的transformer encoder中,这里的transformer encoder由多个transformer 标准块构成,包括multi head attention 然后相加并进行层归一化,以及后面的FFN(前馈神经网络)比如上面的剪刀的图像,其实由三个有效的掩码。
2024-11-02 22:25:19 580
原创 Nsight Systems:Unable to configure the collection of CPU IP samples报错
Unable to configure the collection of CPU IP samples, backtraces, and/or scheduling data. Try the 'nsys status --environment' command to learn more.
2024-09-16 20:30:32 576
原创 ROS安装教程(鱼香ROS快捷版)
对于初学者来说,ROS的安装往往是一个令人头疼的问题,复杂的步骤和网络问题常常成为入门的第一道障碍。为了让大家能够轻松地跨过这道门槛,本博客旨在提供一个简明扼要的ROS安装指南,向大家强烈安利鱼香ROS一键安装,让大家能够快速搭建起自己的ROS工作环境。本文主要是记录ROS的快捷安装过程,避免花费太多时间在ROS安装上,网络问题确实很让人头疼,使用鱼香ROS的安装包确实可以十分有效的避免这些问题,这是鱼香ROS的官网。最后提醒一下,安装过程中注意根据自己Ubuntu系统版本更改ROS的安装版本。
2024-04-02 12:44:33 2770 2
原创 从零开始实现ORB_SLAM2编译与运行
对于初学者来说,安装和编译ORB_SLAM2可能是一个复杂且耗时的过程。官方文档虽然提供了编译指南,但在实际操作过程中,用户可能会遇到各种问题,这些问题往往需要额外的搜索和尝试才能解决。因此,本博客旨在提供一个详尽的步骤说明,从零开始详细记录安装、编译以及运行ORB_SLAM2的全过程,包括基于原始`build`系统的编译和基于ROS的`build_ros`系统编译。
2024-03-12 09:58:22 1853 1
原创 openCV源码安装与卸载
本文旨在记录openCV安装的具体过程,便于后续再次安装时作为参考,openCV库的python安装十分便捷,但是由于要跑SLAM建图,所以必须要源码安装,openCV的源码安装有很多的坑,安装不正确编译很难通过,因此本文记录了的源码安装与卸载,希望对大家有所帮助。本人环境:Ubuntu16.04、gcc、g++、cmake。
2024-03-10 19:52:39 968 1
原创 在WSL2中安装多个Ubuntu教程
适用于 Linux 的 Windows 子系统 (WSL) 是 Windows 的一项功能,可用于在 Windows 计算机上运行 Linux 环境,而无需单独的虚拟机或双引导。通常WSL默认仅安装一个默认的Ubuntu系统,但是在实际使用过程中,我们经常需要多个Ubuntu系统,因此本教程将详细介绍在WSL2中安装多个Ubuntu,希望对大家有所帮助。
2024-03-09 10:36:52 4034 1
原创 MMdetection3D-v1.1.0rc5安装教程
相信大家在开始学习mmdet3d时都会碰到环境安装失败的问题,特别是安装低版本mmdet3d时,由于官方给的文档并没有每个低版本的安装教程,同时mmdet3d对mmcv、mmdet、mmseg等都有版本要求,导致安装起来很费时间,因此本教程旨在分享本人安装mmdet3d的过程,希望对大家有帮助。注意:本教程的环境与MMdet3d的官方教学视频相同,可以运行教程中的所有代码。B站MMdet3d教学。
2024-03-06 10:49:42 1014 2
原创 MMDetection3D系列问题解决方法
本文档记录了我在学习MMDetection3D过程中遇到的各种BUG和相应的解决方法,亲测有效,希望对大家有所帮助。MM3d。FormatCode() got an unexpected keyword argument ‘verify‘AttributeError: module 'setuptools._distutils' has no attribute 'version'
2024-03-04 21:39:50 1216
原创 MMdetection3D安装教程
补充:由于torch和cuda对mmcv的版本有一定限制,所以当您的torch和cuda版本与本教程不同时,需要检查是否有您指定的对应版本的mmcv,没有的话会一直卡在 Buildin。mm3d文档:https://mmdetection3d.readthedocs.io/zh-cn/latest/get_started.html。mm3d版本对应:https://blog.csdn.net/XCCCCZ/article/details/134315977。,便捷的检查方法可用看是否有相应的.html网站。
2024-03-03 17:35:17 1379
原创 TensorRT入门:polygraphy模型调试器的使用
在模型迁移到 TensorRT 之后,我们还需要解决下面的三个问题,怎么检验 TonsRT 上计算的正确性和计算精度?怎么找出计算错误或者精度不足的层?怎么进行简单的计算图优化?为了解决上述问题,我们需要引入Polygraphy这个工具。它是一个NVIDIA提供的深度学习模型的调试器。
2024-03-02 19:28:40 3457
原创 TensorRT入门:trtexec开发辅助工具的使用
trtexec 工具是 TensorRT 的命令行工具,位于 TensorRT 的安装目录中,随 TensorRT 的安装就可以直接使用。trtexec,不仅打包了几乎所有 TensorRT 脚本可以完成的工作,并且扩展丰富的推理性能测试的功能。通常我们使用 trtexec 完成下面三个方面的工作,一是由 Onnx 模型文件生成 TensorRT 推理引擎,并且可以序列化为 .plan 文件。二是可以查看 Onnx 或者 .plan 文件的网络的逐层信息。第三是可以进行模型性能测试。
2024-03-02 12:17:07 4645 1
原创 TensorRT:onnx parser与onnx-graphsurgeon的解析与实践
TensorRT作为一种高性能推理引擎,为我们提供了优化和加速深度学习模型的能力。而在TensorRT中,`ONNX parser`和`onnx-graphsurgeon`则是两个强大的工具,能够帮助我们更好地解析和优化ONNX模型。本博客包含ONNX parser、parser的使用、onnx-graphsurgeon三个章节,重点在介绍onnx-graphsurgeon的使用,列举了大量onnx-graphsurgeon的使用方法示例
2024-03-01 17:09:39 2606 1
原创 ONNX 模型格式分析与使用
本文主要介绍ONNX基础知识已经ONNX的模型组成,另外补充了一些关于模型部署工作的常用流程,本文主要知识点在介绍ONNX的模型组成,包括Graph、Node和Tensor,后续将补充代码例程部分。需要注意的是,虽然ONNX提供了一种通用的中间表示格式,但在实际转换中仍可能会出现一些兼容性和限制性问题。因此,在进行模型转换时,建议仔细了解目标设备和框架的要求,并进行必要的适配和调整。
2024-02-29 15:48:41 5872 3
原创 TensorRT:INT8量化加速原理与问题解析
本文将首先介绍INT8量化的基础知识,解答一些关于INT8的基础问题,然后介绍三种常见的INT8量化算法,包括动态对称量化、动态非对称量化、静态对称量化,最后介绍一个在TensorRT中实现INT8量化的例子:MNIST手写数字识别的INT8_PTQ量化。
2024-02-28 16:51:40 3168
原创 TensorRT:FP16优化加速的原理与实践
TensorRT:FP16优化加速的原理与实践:FP16也是一种精度类型,只不过它的位数只有16位,被称为半精度浮点数,它包括1位符号位、5位指数位、10位小数位,由于位数的减少,所以FP16的表示范围和精度都比FP32低,但是对于模型部署来说,数据位数的减少可以让计算复杂度降低,加速模型推理速度。
2024-02-28 10:26:14 1547
原创 KeyError: ‘Transformer/encoderblock_0\\MultiHeadDotProductAttention_1/query\\bias is not a file in t
Transformer/encoderblock_0\\MultiHeadDotProductAttention_1/query\\kernel is not a file in the archive'
2024-02-27 19:37:26 915
原创 解决:Docker Desktop Unexpected WSL error
在Window系统中安装Docker时,需要安装WSL虚拟系统,在安装完Docker Desktop启动时可能会出现报错,这往往是因为部分系统设置没有打开。An unexpected error was encountered while executing a WSL command. Commorcauses include access rights issues, which occur after waking the computer or notbeing connected to your
2024-02-26 14:00:47 2156 3
原创 TensorRT_Plugin:手写Plugin详细步骤教程
本文为学习Nvidia官方视频教程的学习笔记,分享TensorRT手写Plugin的详细步骤,文中代码参考Nvidia提供的cookbook中05-Plugin/API的代码,强烈建议您先观看Nvidia的教程视频第三节,然后学习本文档。手写Plugin难度较高,尤其是Plugin的核函数部分,建议参考Nvidia的教程模板进行修改,另外针对于Plugin的读取,需要大家了解并掌握详细的读取步骤,实现对Plugin的注册和配置,并最终实现将自己手写的Plugin插入到网络中。
2024-02-23 16:13:14 1258
原创 模型精度问题(FP16,FP32,TF32,INT8)精简版
相信大家在学习模型部署和加速时都遇到过模型精度问题,精度和效率往往需要根据实际模型应用需求进行取舍,下面我以最精简的方式介绍常见的模型精度类型(FP16,FP32,TF16,INT8),希望对大家处理模型精度问题有所帮助。浮点数精度:双精度(FP64)、单精度(FP32、TF32)、半精度(FP16、BF16)、8位精度(FP8)、4位精度(FP4、NF4)量化精度:INT8、INT4。
2024-02-13 13:35:15 8669
原创 Docker:使用Nvidia官方的pytorch、tensorflow、TensorRT镜像创建Container容器
相信大家在学习新的知识前都遇到过开发环境安装不上,或者环境冲突和版本不匹配的情况,如果我们使用虚拟机或者WSL技术新建一个完整系统,这又往往需要耗费很长时间,同时在我们学习深度学习等相关技术时,CUDA、cuDNN、cuBLAS、TensorRT等GPU支持库都有强版本依赖,手动安装需要耗费很长时间,本文将以创建一个包含python=3.8、CUDA=12.1、cuBLAS=12.1 、cuDNN=8.9、TensorRT=8.6.1、pytorch的container为例,介绍使用docker创建容器。
2024-02-12 16:40:21 1615 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人