非参数化估计

参数估计与非参数估计

前面介绍了3中常用的参数估计的方法,分别是:极大似然估计、最大后验估计和贝叶斯估计。参数估计方法都是用已知的概率分布函数与拟合数据,然后估计出概率分布的参数。但是有时候数据的概率分布函数未知或者概率分布函数不能很好的拟合数据,这个时候就可以用非参数估计数据的概率密度函数。

非参数估计

非参数估计适用于:已知样本所属类别,但是样本的概率密度函数未知(也就是样本的分布未知)的情况。
非参数估计的基本思想:通过样本 x x x 周围的区域 R R R 来估计 x x x的概率密度 p ( x ) p(x) p(x)
非参数估计的目的:通过样本集 X X X估计出样本空间中任意一点的概率密度 p ^ ( x ) \hat{p}(x) p^(x)
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值