参数估计与非参数估计
前面介绍了3中常用的参数估计的方法,分别是:极大似然估计、最大后验估计和贝叶斯估计。参数估计方法都是用已知的概率分布函数与拟合数据,然后估计出概率分布的参数。但是有时候数据的概率分布函数未知或者概率分布函数不能很好的拟合数据,这个时候就可以用非参数估计数据的概率密度函数。
非参数估计
非参数估计适用于:已知样本所属类别,但是样本的概率密度函数未知(也就是样本的分布未知)的情况。
非参数估计的基本思想:通过样本
x
x
x 周围的区域
R
R
R 来估计
x
x
x的概率密度
p
(
x
)
p(x)
p(x)
非参数估计的目的:通过样本集
X
X
X估计出样本空间中任意一点的概率密度
p
^
(
x
)
\hat{p}(x)
p^(x)