非参数估计

本文介绍了非参数估计中的概率密度估计原理,通过样本落在特定区域的概率来估算密度函数。讨论了当样本数量增加时,比值k/n作为概率估计的准确性。接着,讲解了Parzen窗方法,利用窗函数对样本进行统计,得出概率密度估计函数,特别提到了高斯窗函数在估计中的应用,展示了如何通过正态分布叠加形成密度估计。
摘要由CSDN通过智能技术生成

非参数估计

标签(空格分隔): 模式分类

@author lancelot-vim


概率密度的估计

估计未知概率密度的一个基本事实是:一个向量 x⃗  落在区域R中的概率为: P=Rp(x)dx ,因此P是概率密度 p(x) 取了平滑的版本,所以,我们可以根据概率P来估计密度函数p.

假设n个样本 x1,x2, ... ,xn 都是根据概率密度函数 p(x) 独立同分布抽样得到的,显然,其中k个样本落在区域R中的概率服从二项分布: Pk=(nk)Pk(1P)nk
那么k的期望为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值