【高能物理.ROOT】一个Bin的信号强度上限的假设检验(上)

一个Bin的信号强度上限的假设检验

如有错误,欢迎指正!

问题

给定预计的信号个数 S S S,本底个数 B B B,求出给定数据 N o b s N_{obs} Nobs下,信号强度 μ \mu μ的上限.
解释:
一个Bin内真实情况应该有 μ S + B \mu S+B μS+B个,数据 N e x p N_{exp} Nexp应该服从以 μ S + B \mu S+B μS+B为均值,标准差 μ S + B \sqrt{\mu S+B} μS+B 的泊松分布.但是实际数据 N o b s N_{obs} Nobs可能产生了一个值,通过泊松分布来就可以判断哪些 μ \mu μ值是不可能的。
泊松分布的概率密度函数为:
f ( n ∣ λ ) = λ n e − λ n ! f(n|\lambda)=\frac{\lambda^ne^{-\lambda}}{n!} f(nλ)=n!λneλ
泊松分布的期望值为 λ \lambda λ,标准差为 λ \sqrt{\lambda} λ .
例如:
假设有一组数据 N o b s = 10 N_{obs}=10 Nobs=10,预计的(或者说模型的)信号个数 S = 4 S=4 S=4,本底个数 B = 5 B=5 B=5,显然当 μ = = 2.5 \mu==2.5 μ==2.5的时候,
f ( 10 ∣ 2.5 ∗ 4 + 5 ) = λ n e − λ n ! = 0.0486 f(10|2.5*4+5)=\frac{\lambda^ne^{-\lambda}}{n!}=0.0486 f(10∣2.54+5)=n!λneλ=0.0486
这个概率很小说明 μ \mu μ不太可能在这个值。扫描 f ( 10 ∣ μ ∗ 4 + 5 ) > 0.05 f(10|\mu*4+5)>0.05 f(10∣μ4+5)>0.05就可以得到一个 μ \mu μ的区间.但是这个检验方法足够好吗?后面将用假设检验来获得上限。

理论

最大似然函数

实际判选会更加复杂,不过基本结论是一致的,判断在这个 μ \mu μ时的发生的概率应该大于0.05.(正常说法是[拒绝 μ \mu μ当在此 μ \mu μ时给定数据发生的概率小于0.05])
实际中往往用最大似然函数来描述这个概率
L ( μ ; Θ ) = L e l s e ( μ ; Θ ) ∏ B i n = 1 N B i n ( μ S ( Θ ) + B ( Θ ) ) n i , o b s e − μ S ( Θ ) − B ( Θ ) n i , o b s ! L(\mu;\Theta)=L_{else}(\mu;\Theta)\prod_{Bin=1}^{N_{Bin}}\frac{(\mu S(\Theta)+B(\Theta))^{n_{i,obs}}e^{-\mu S(\Theta)-B(\Theta)}}{n_{i,obs}!} L(μ;Θ)=Lelse(μ;Θ)Bin=1NBinni,obs!(μS(Θ)+B(Θ))ni,obseμS(Θ)B(Θ)
其中 μ , Θ \mu,\Theta μ,Θ是模型参数,比如说有 N B i n N_{Bin} NBin个Bin,每个Bin的信号个数 S ( Θ ) S(\Theta) S(Θ)和本底个数 B ( Θ ) B(\Theta) B(Θ)是不同的.观测的结果 n i , o b s n_{i,obs} ni,obs也是不同的.
其中 L e l s e ( μ ; Θ ) L_{else}(\mu;\Theta) Lelse(μ;Θ)是模型一种先验分布或者不关心的区域测量的最大似然函数,

比如说想要限制 μ \mu μ μ = 1.0 ± 0.1 \mu=1.0\pm 0.1 μ=1.0±0.1,那么 L e l s e ( μ ; Θ ) = exp ⁡ [ − ( 1.0 − μ ) 2 2 ( 0.1 ) 2 ] L_{else}(\mu;\Theta)=\exp[-\frac{(1.0-\mu)^2}{2(0.1)^2}] Lelse(μ;Θ)=exp[2(0.1)2(1.0μ)2],即 μ \mu μ的限制(或者说constrain)是均值为1.0,方差为0.1的正态分布.这里因为最大似然函数可以差任意一个倍数所以归一化没写。

比如有一个区域没有信号,但是这块位置的拟合可以给信号区域的拟合提供帮助,那么 L e l s e ( μ ; Θ ) = ∏ B n i e − B n i ! L_{else}(\mu;\Theta)=\prod\frac{{B}^{n_i}e^{-B}}{n_i!} Lelse(μ;Θ)=ni!BnieB,即边带区域的似然函数(S=0)。

Asimov数据1

Asimov数据是指用当前的模型产生一个数据,这个数据具有一些好的性质:

  • 它是模型中最有可能出现的结果
  • 它可以用来估计模型参数的不确定性
  • 它可以用来获得假设检验的预期结果及不确定性

Asimov满足(定义):
∂ log ⁡ L ( n i , A s i m o v ; θ ) ∂ θ = 0 \frac{\partial \log L(n_{i,Asimov};\theta)}{\partial \theta}=0 θlogL(ni,Asimov;θ)=0
其中 θ \theta θ是模型参数( μ \mu μ, Θ \Theta Θ),而 n i , A s i m o v n_{i,Asimov} ni,Asimov是Asimov数据每个Bin的“观测值”.

参数估计及区间估计

way 1

最大似然估计法可以获得最大似然估计值,
θ ^ → s . t . max ⁡ L ( n ; θ ) \hat{\theta}\rightarrow s.t.\max{L(n;\theta)} θ^s.t.maxL(n;θ)
区间估计从最大似然函数曲线与一条 y = max ⁡ L − 1 / 2 y=\max{L}-1/2 y=maxL1/2的直线的交点得到。
( θ m i n , θ m a x ) → s . t . L ( n ; θ m i n ) = L ( n ; θ m a x ) = max ⁡ L − s 2 / 2 (\theta_{min},\theta_{max})\rightarrow s.t.L(n;\theta_{min})=L(n;\theta_{max})=\max{L}-s^2/2 (θmin,θmax)s.t.L(n;θmin)=L(n;θmax)=maxLs2/2
其中 s s s表示几倍的 σ \sigma σ值,比如说 s = 1.0 s=1.0 s=1.0表示68%置信区间.

way 2

利用似然比可以得到置信区间
λ ( θ ) ≡ L ( n ; θ ) L ( n ; θ ^ ) , θ ^ → s . t . max ⁡ L ( n ; θ ) \lambda(\theta)\equiv \frac{L(n;\theta)}{L(n;\hat\theta)},\hat{\theta}\rightarrow s.t.\max{L(n;\theta)} λ(θ)L(n;θ^)L(n;θ),θ^s.t.maxL(n;θ)
由Wilks定理, − 2 l n ( λ ( θ ) ) ∼ χ 2 ( m ) -2ln(\lambda(\theta))\sim \chi^2(m) 2ln(λ(θ))χ2(m),所以可以得到
− 2 l n ( λ ( θ m i n ) ) = − 2 l n ( λ ( θ m a x ) ) = F χ 2 − 1 ( 1 − α , m ) -2ln(\lambda(\theta_{min}))=-2ln(\lambda(\theta_{max}))=F^{-1}_{\chi^2}(1-\alpha,m) 2ln(λ(θmin))=2ln(λ(θmax))=Fχ21(1α,m)
协方差估计:
V ^ ( θ i ) = ( − ∂ 2 l n ( L ( n i ; θ ) ) ∂ 2 θ i ∣ θ ^ ) − 1 \hat{V}(\theta_i)=(-\frac{\partial^2ln(L(n_i;\theta))}{\partial^2\theta_i}|_{\hat\theta})^{-1} V^(θi)=(2θi2ln(L(ni;θ))θ^)1

特别的,边缘似然比:
λ ( θ 1 ) ≡ L ( n i ; θ 1 , θ ^ ^ 2 ) L ( n i ; θ ^ ) , θ ^ ^ 2 ( θ 1 ) → 给定 θ 1 , s . t . max ⁡ L ( n i ; θ 1 , θ 2 ) \lambda(\theta_1)\equiv\frac{L(n_i;\theta_1,\hat{\hat\theta}_2)}{L(n_i;\hat\theta)},\hat{\hat\theta}_2(\theta_1)\rightarrow 给定\theta_1, s.t.\max{L(n_i;\theta_1,\theta_2)} λ(θ1)L(ni;θ^)L(ni;θ1,θ^^2),θ^^2(θ1)给定θ1,s.t.maxL(ni;θ1,θ2)

假设检验

假设检验一定要有一个检验统计量,对于特定问题有特定的假设检验统计量。
奈曼-皮尔逊引理可以确定 t ≡ − 2 l n ( λ ( θ ) ) t\equiv -2ln(\lambda(\theta)) t2ln(λ(θ))是最优统计量。定义 t μ ≡ − 2 l n ( λ ( μ ) ) t_\mu\equiv -2ln(\lambda(\mu)) tμ2ln(λ(μ)),其中 μ \mu μ是信号强度,即跟前面一致的 μ \mu μ,这里是边缘似然比,其他参数看不到了。由于实际问题往往有 μ > 0 \mu>0 μ>0的限制实际的统计量稍微复杂一些。

现在来做一个上限的假设检验:

做上限的假设检验一般是不能排除 μ = 0 \mu=0 μ=0情况下的检验。(也称为灵敏度分析)
对于一个给定的 μ t e s t {\mu}_{test} μtest值做假设检验。

H0: μ = μ t e s t \mu=\mu_{test} μ=μtest,H1: μ = 0 \mu=0 μ=0

t μ , t e s t t_{\mu,{test}} tμ,test在当模型 μ = μ ′ \mu=\mu' μ=μ的分布是清楚的,若 μ t e s t = μ ′ {\mu}_{test}=\mu' μtest=μ则服从中心卡方分布 χ 2 ( m ) \chi^2(m) χ2(m),m为参数个数(这里只有一个参数 μ \mu μ,m=1)。反之服从非中心卡方分布。
那么其实目前很清晰了,(如果真实世界确实是在当前模型下,一般假定),若真实世界服从 μ ′ \mu' μ的模型(注意:我们不知道这个数值),那么我们只需要确定 t μ , t e s t t_{\mu,{test}} tμ,test的观测数值是不是比较符合中心卡方分布即可!
如果符合,那么说明当前检验的 μ t e s t {\mu}_{test} μtest有可能是正确的。不能拒绝H0。
如果不太符合(例如用 p 0 p_0 p0量化描述一下不可能程度 p 0 < 0.05 p_0<0.05 p0<0.05),那我们就应该拒绝当前 μ t e s t {\mu}_{test} μtest作为真实信号强度的假设(当前 μ t e s t {\mu}_{test} μtest非常有可能不对)。拒绝H0
通过不断调整 μ t e s t {\mu}_{test} μtest的值,预计能够得到信号强度 μ \mu μ的上限。

CLs,CLsb,CLb

大致方向清楚了,但是细致想来如何量化"符合","不符合"呢?
图片来源网络

上面一张图描述了 t μ , t e s t t_{\mu,test} tμ,test的分布情况,上面两个分布一个是真实世界 μ ′ = μ t e s t \mu'=\mu_{test} μ=μtest情况下 t μ , t e s t t_{\mu,test} tμ,test应该服从的分布H0,
另一个是真实世界 μ ′ = 0 \mu'=0 μ=0的情况下 t μ . t e s t t_{\mu.test} tμ.test的分布,上面说过,若 μ t e s t ≠ μ ′ {\mu}_{test}\neq \mu' μtest=μ那么 t μ , t e s t t_{\mu,test} tμ,test服从非中心卡方分布,即图中的所示分布H1。
一个简单方法衡量图中的 p 0 p_0 p0值( p s + b , α p_{s+b},\alpha ps+b,α),如果 p 0 < 0.05 p_0<0.05 p0<0.05就拒绝H0。
但是如果本底 B B B很多(H1和H0分布几乎一致,因为 S S S影响不大),实际上如果 p 0 < 0.05 p_0<0.05 p0<0.05,很有可能这只是因为本底的波动导致的,不应该拒绝H0.
所以,我们需要一个更加严格的检验方法。

CLs就是一个更严格的检验方法。

  • C L s = p 0 p 1 = p s + b 1 − P b = C L s + b C L b = α 1 − β CL_s=\frac{p_0}{p_1}=\frac{p_{s+b}}{1-P_b}=\frac{CL_{s+b}}{CL_b}=\frac{\alpha}{1-\beta} CLs=p1p0=1Pbps+b=CLbCLs+b=1βα
  • C L s + b = p s + b = p 0 CL_{s+b}=p_{s+b}=p_0 CLs+b=ps+b=p0
  • C L b = p 1 = 1 − P b CL_b=p_1=1-P_b CLb=p1=1Pb

值的注意的是,检验统计量是可以不同的选择的,不过 C L s CL_s CLs判断方法是一致的。通过找到参数值 μ t e s t \mu_{test} μtest,使得在对 t μ , t e s t t_{\mu,test} tμ,test的检验发现 C L s = = 0.05 CL_s==0.05 CLs==0.05,对应的 μ t e s t \mu_{test} μtest就是在目前数据情况下给出的信号强度的上限。

提到数据,自然联想到之前说的Asimov数据,通过Asimov数据能够估计一个信号强度 μ \mu μ的上限,以及其不确定性。例如在纯本底假设下 μ = 0 \mu=0 μ=0的Asimov数据,就能得到纯本底假设下预期上限即不确定度。

下一步代码实现。


  1. https://arxiv.org/abs/1007.1727v3 ↩︎

  • 30
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 如果您想打开 ROOT 格式的图片,您需要先安装 ROOT 软件包。ROOT一个用于高能物理数据分析的软件框架,可用于绘制、分析和处理 ROOT 格式的数据和图像。您可以在 ROOT 官网上下载 ROOT 软件包,并按照官方文档中的指导进行安装和使用。在安装完成后,您可以使用 ROOT 软件打开 .root 格式的图片。 ### 回答2: 打开一个.root的图片意味着要使用ROOT软件来查看和处理这个文件。ROOT一个数据分析框架,经常用于高能物理实验数据的分析和绘图。 要打开.root图片,首先需要安装并打开ROOT软件。在ROOT软件界面中,可以通过点击菜单栏中的"File"按钮,然后选择"Open"选项或者使用快捷键Ctrl+O来打开文件浏览器。 在文件浏览器中,找到存储有.root图片的文件夹,并双击选择要打开的文件。打开文件后,ROOT软件会自动解析并显示图片内容。 在ROOT软件中,可以使用不同的功能来查看和处理打开的.root图片。例如,可以使用ROOT提供的绘图函数来绘制直方图、散点图等。可以调整绘图的样式、颜色和标签等属性,以满足个人需求。 此外,ROOT还提供了丰富的数据分析功能,可以进行数据拟合、统计分析等操作。通过ROOT的命令行界面或者编写脚本,可以实现更复杂的数据分析操作。 在处理完打开的.root图片后,可以选择保存修改后的结果或者关闭文件。 ### 回答3: 若要打开一个以“.root”为扩展名的图片文件,你需要使用适当的软件。一种常用的软件是ROOT(一种数据处理和分析框架),它可以用于打开并操作以“.root”为扩展名的文件。 要打开一个.root图片,首先需要安装ROOT软件。可以从ROOT的官方网站或其他可靠的来源下载并安装ROOT。安装完成后,就可以启动ROOT软件。 在ROOT软件中,可以使用TBrowser类打开.root文件。首先,使用ROOT命令提示符创建并初始化一个TBrowser对象。然后,使用TBrowser的Open()方法将.root文件加载到浏览器中。 加载完成后,就可以在TBrowser窗口中浏览和查看图片文件的内容。可以使用ROOT提供的函数和工具对图片进行进一步的分析和可视化。 总之,要打开一个.root的图片文件,需要先安装ROOT软件,然后使用TBrowser类打开并浏览该文件。ROOT软件提供了许多功能和工具,可用于处理和分析.root文件中的图片数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值