蓝桥杯 算法提高 合并石子(Java解题)

问题描述
  在一条直线上有n堆石子,每堆有一定的数量,每次可以将两堆相邻的石子合并,合并后放在两堆的中间位置,合并的费用为两堆石子的总数。求把所有石子合并成一堆的最小花费。
输入格式
  输入第一行包含一个整数n,表示石子的堆数。
  接下来一行,包含n个整数,按顺序给出每堆石子的大小 。
输出格式
  输出一个整数,表示合并的最小花费。
样例输入
5
1 2 3 4 5
样例输出
33
数据规模和约定
  1<=n<=1000, 每堆石子至少1颗,最多10000颗。

分析:

此题使用动态规划思想解题

dp[i][j]表示i堆到j堆的最小花费

sum[i]为相邻两堆石子总个数

代码:

提交时显示运行超时得分90分

import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner x = new Scanner(System.in);
		int n = x.nextInt();
		int a[] = new int[1010];
		int sum[] = new int[1010];
		for (int i = 1; i <= n; i++) {
			a[i] = x.nextInt();
			sum[i] = sum[i - 1] + a[i];
		}
		int dp[][] = new int[1010][1010];
		for (int i = n - 1; i > 0; i--) {
			for (int j = i + 1; j <= n; j++) {
				dp[i][j] = dp[i][j - 1] + sum[j] - sum[i - 1];
				for (int k = i; k <= j; k++) {
					dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + sum[j]
							- sum[i - 1]);
				}
			}
		}
		System.out.println(dp[1][n]);
	}

	private static int min(int i, int j) {
		int k;
		if (i > j) {
			k = i;
			i = j;
			j = k;
		}
		return i;
	}
}

展开阅读全文

没有更多推荐了,返回首页