大模型相关基础(基于李沐)

InstructGPT

介绍

ChatGPT用到的技术和InstructGPT一样的技术,区别是InstructGPT是在GPT3上微调,ChatGPT是在GPT3.5上微调。

InstructGPT论文发表在2022年3月4号,标题是《训练语言模型使得它们能够服从人类的一些指示》。

标题解释:语言模型是每次给定一段东西,然后去预测下一个词,是一个自监督学习,是没有标注的。如果你想让语言模型去解释费马小定理,那么你的训练文本中需要出现过相关的内容。训练的文本是几百亿这个数量级,你不知道里面会有什么东西,只能全送进去期待大力出奇迹。

但是这样做模型的控制能力太弱了,会有两个问题:

1、有效性,想让模型去学做一件事,但是模型就是学不会,因为你的文本中可能就没有相关的东西。

2、安全性,你的模型输出一些不应该输出的内容。

如何解决这两个问题呢,就是我们标一点数据,再把语言模型进行微调,效果会更好一些,能够更加服从人类的指示,也就是标题的意思。

这篇论文展示了怎么样对语言模型和人类意图之间进行匹配,方法是在人类的反馈上进行微调。

方法简介:收集很多问题,使用标注工具将问题的答案写出来,用这些数据集对GPT3进行微调。接下来再收集一个数据集,通过刚才微调的模型输入问题得到一些输出答案,人工对这些答案按好坏进行排序,然后通过强化学习继续训练微调后的模型,这个模型就叫InstrunctGPT。

结果上说,有了标注的数据集,1.3B的模型参数,InstructGPT要好过最大的175B个参数的GPT3。适当对数据进行人工的标注,可能反而总体的成本会降低。

思路

大的语言模型会生成有问题的输出,因为模型训练用的目标函数不那么对。

实际的目标函数:在网上的文本数据预测下一个词。

我们希望的目标函数:根据人的指示、有帮助的、安全的生成答案。

InstructGPT就是解决这个问题,方法是RLHF(reinforcement learning from human feedback),基于人类反馈的强化学习。

重点:两个标注数据集,三个模型。

1、找人来写出各种各样的问题(或者从以前GPT3接口收集的问题),这些问题在GPT里面叫做prompt

例如:什么是月亮?

2、让人根据问题写答案

例如:围绕地球旋转的球形天体。

3、将问题和答案拼在一起,形成一段对话。大量这样的对话文本,形成第一个标注数据集。

例如:什么是月亮?围绕地球旋转的球形天体。

4、使用这些对话微调GPT3。GPT3的模型在人类标注的这些数据上进行微调出来的模型叫做SFT(supervised fine-tune),有监督的微调。这就是训练出来的第一个模型。

5、给出一个问题,通过SFT模型生成几个答案,这里假设生成四个答案。

例如:什么是月亮?

SFT模型生成了四个答案:

A、月亮是太阳系中离地球最近的天体。

B、月亮是太阳系中体积第五大的卫星。

C、月亮是由冰岩组成的天体,在地球的椭圆轨道上运行。

D、月亮是地球的卫星。

6、将四个答案让人根据好坏程度进行排序。

例如:张三觉得答案D是最好的,其次是C,C比A要好,A和B差不多。就是D>C>B=A。

7、将大量的人工排序整理为一个数据集,就是第二个标注数据集。

8、使用排序数据集训练一个RM模型,reward model,奖励模型。这是第二个模型。

模型输入:问题+答案,例如:什么是月亮?月亮是地球的卫星。

模型输出:分数,例如:9.4。

优化目标:问题+答案得到的分数要满足人工排序的顺序。

例如:

什么是月亮?月亮是太阳系中离地球最近的天体。 5.4

什么是月亮?月亮是太阳系中体积第五大的卫星。 5.4

什么是月亮?月亮是由冰岩组成的天体,在地球的椭圆轨道上运行。 8.2

什么是月亮?月亮是地球的卫星。 9.4

这里得到的分数就满足张三的排序:D>C>B=A。

9、继续给出一些没有答案的问题,通过强化学习继续训练SFT模型,新的模型叫做RL模型(Reinforcement Learning)。优化目标是使得RF模型根据这些问题得到的答案在RM模型中得到的分数越高越好。这是第三个模型。

10、最终微调后的RL模型就是InstructGPT模型

备注:两次对模型的微调:GPT3模型—>SFT模型—>RL模型,其实这里始终都是同一个模型,只是不同过程中名称不一样。

需要SFT模型的原因:GPT3模型不一定能够保证根据人的指示、有帮助的、安全的生成答案,需要人工标注数据进行微调。

需要RM模型的原因:标注排序的判别式标注,成本远远低于生成答案的生成式标注。

需要RF模型的原因:在对SFT模型进行微调时,生成的答案分布也会发生变化,会导致RM模型的评分会有偏差,需要用到强化学习。

数据收集

首先要收集问题集,prompt集:标注人员写出这些问题,写出一些指令,用户提交一些他们想得到答案的问题。先训练一个最基础的模型,给用户试用,同时可以继续收集用户提交的问题。划分数据集时按照用户ID划分,因为同一个用户问题会比较类似,不适合同时出现在训练集和验证集中。

三个模型的数据集:

1、SFT数据集:13000条数据。标注人员直接根据刚才的问题集里面的问题写答案。

2、RM数据集:33000条数据。标注人员对答案进行排序。

3、RF数据集:31000条数据。只需要prompt集里面的问题就行,不需要标注。因为这一步的标注是RM模型来打分标注的。

openai专门找了40个标注人员进行标注,需要长期交流的合同工,因为这些标注任务需要一定熟练度、对业务的理解、并需要做到随时沟通。

三个模型的解释

相关知识:

  1. 交叉熵用来评估标签和预测值之间的差距。这里是将排序的分数差转换成分类问题,就可以计算分数差的分类(1或者-1)和真实预测值之间的差距,1表示yw比yl排序更前,-1表示yl比yw排序更前。
  2. KL散度用来评估两个概率分布之间的相似度,KL散度始终大于等于0。这里是用来评估πφRL和πSFT两个模型相似度,两个模型相同则KL散度为0,KL散度越大表示两个模型相差越大。

一、SFT(Supervised fine-tuning)模型

把GPT3这个模型,在标注好的第一个数据集(问题+答案)上面重新训练一次。

由于只有13000个数据,1个epoch就过拟合,不过这个模型过拟合也没什么关系,甚至训练更多的epoch对后续是有帮助的,最终训练了16个epoch。

二、RM(Reward modeling)模型

把SFT模型最后的unembedding层去掉,即最后一层不用softmax,改成一个线性层,这样RM模型就可以做到输入问题+答案,输出一个标量的分数。

RM模型使用6B,而不是175B的原因:

1、小模型更便宜

2、大模型不稳定,loss很难收敛。如果你这里不稳定,那么后续再训练RL模型就会比较麻烦。

损失函数,输入是排序,需要转换为值,这里使用Pairwise Ranking Loss

参数解释:

1、D:第二个数据集,人工对答案进行排序。

2、x:第二个数据集D中的问题,每个问题对应K个答案,答案的顺序已经人工标注好了。

3、yw和yl:x对应的K个答案中的两个,其中yw排序比yl高,因为是一对,所以叫pairwise。

4、rθ(x,y):即需要训练的RM模型,对于输入的一对x和y得到的标量分数。

5、θ:需要优化的参数。

损失函数理解:

1、x和yw这一对问题和答案,放进RM模型中算出一个分数rθ(x,yw)

2、x和yl这一对问题和答案,放进RM模型中算出一个分数rθ(x,yl)

3、因为人工标注出yw的排序要比yl高,r(x,yw)得到的分数应该比r(x,yl)得到的分数高,所以rθ(x,yw)-rθ(x,yl)这个差值要越大越好

4、把相减后的分数通过sigmoid,那么这个值就在-1到1之间,并且我们希望σ(rθ(x,yw)-rθ(x,yl))越大越好

5、这里相当于将排序问题转换为了分类问题,即σ(rθ(x,yw)-rθ(x,yl))越接近1,表示yw比yl排序高,属于1这个分类,反之属于-1这个分类。所以这里就用logistic loss,由于是二分类,也相当于是交叉熵损失函数。

6、对于每个问题有K个答案,所以前面除以C(K,2),使得loss不会因为K的变化而变化太多。

7、最后是最小化loss(θ),就是要最大化rθ(x,yw)-rθ(x,yl)这个值,即如果一个答案的排序比另一个答案排序高的话,我们希望他们通过RM模型得到的分数之差能够越大越好。

对于K的选择,为什么选9,而不选择4?

1、进行标注的时候,需要花很多时间去理解问题,但答案和答案比较相近,所以4个答案排序要30秒,但9个答案排序可能40秒就够了。加上看问题的时间,K=9花的时间可能比K=4多了30%。同时C(9,2)=36,C(4,2)=6,即K=9生成的问答对是K=4的6倍,等于说K=9比K=4只多花了30%的时间,但是能够标注的信息量却是他的6倍,非常划算。

2、K=9时,每次计算loss都有36项rθ(x,y)要计算,这个RM模型计算比较贵,但可以通过重复利用之前算过的值,使得只要计算9次就行,这样就可以剩下很多时间。

标注时为什么不选择只标注最好的那个,而是进行排序?

K=4的时候是在4个答案中只标注最好的那一个,标注方便很多,这时候计算loss时变成了一个多分类的softmax。但是这样做有一个问题,就是容易overfitting。所以K=9时,保留了排序的信息,从而解决overfitting的问题。

三、RL(Reinforcement learning)模型

这里用的是强化学习,因为他的数据分布是随着策略的更新,环境会发生变化的。优化算法是PPO,Proximal Policy Optimization,近端策略优化。简单来说,就是对目标函数objective(φ)通过随机梯度下降进行优化。

参数解释:

1、πSFT:SFT模型。

2、πφRL:强化学习中,模型叫做Policy,πφRL就是需要调整的模型,即最终的模型。初始化是πSFT。

3、(x,y)∼DπφRL:x是第三个数据集中的问题,y是x通过πφRL模型得到的答案。

4、rθ(x,y):对问题x+答案y进行打分的RM模型。

5、πφRL(y | x):问题x通过πφRL得到答案y的概率,即对于每一个y的预测和它的softmax的输出相乘。

6、πSFT(y | x):问题x通过πSFT得到答案y的概率。

7、x∼Dpretrain:x是来自GPT3预训练模型的数据。

8、β、γ:调整系数。

目标函数理解:

优化目标是使得目标函数越大越好,objective(φ)可分成三个部分,打分部分+KL散度部分+GPT3预训练部分

1、将第三个数据集中的问题x,通过πφRL模型得到答案y

2、把一对(x,y)送进RM模型进行打分,得到rθ(x,y),即第一部分打分部分,这个分数越高就代表模型生成的答案越好

3、在每次更新参数后,πφRL会发生变化,x通过πφRL生成的y也会发生变化,而rθ(x,y)打分模型是根据πSFT模型的数据训练而来,如果πφRL和πSFT差的太多,则会导致rθ(x,y)的分数估算不准确。因此需要通过KL散度来计算πφRL生成的答案分布和πSFT生成的答案分布之间的距离,使得两个模型之间不要差的太远。

4、我们希望两个模型的差距越小越好,即KL散度越小越好,前面需要加一个负号,使得objective(φ)越大越好。这个就是KL散度部分。

5、如果没有第三项,那么模型最终可能只对这一个任务能够做好,在别的任务上会发生性能下降。所以第三部分就把原始的GPT3目标函数加了上去,使得前面两个部分在新的数据集上做拟合,同时保证原始的数据也不要丢,这个就是第三部分GPT3预训练部分。

6、当γ=0时,这个模型叫做PPO,当γ不为0时,这个模型叫做PPO-ptx。InstructGPT更偏向于使用PPO-ptx。

7、最终优化后的πφRL模型就是InstructGPT的模型。

参考:

笔记详情 (bilibili.com)icon-default.png?t=N7T8https://www.bilibili.com/h5/note-app/view?cvid=21090098&pagefrom=comment&richtext=true

 InstructGPT 论文精读【论文精读·48】_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV1hd4y187CR/?spm_id_from=333.999.0.0

 卢菁大模型微调实战和经验分享笔记

 prompt

使用提示 (Prompt) 工程来提高 LLMs 在各种常见和复杂任务 (如间答和算术推理)上的能力

优点: 简单,易上手
缺点: 上限有限,针对不同模型需要做适配;投资人嫌薄;技术人嫌浅

基础prompt提示用法
。文本摘要(Text Summarization)

信息提取(Information Extraction)

问答(Question Answering)

文本分类(Text Classification)

对话(Conversation)

代码生成(Code Generation)

推理(Reasoning)

高级prompt提示用法
零样本提示(Zero-shot Prompting)。

少量样本提示(Few-shot Prompting)

思维链(COT)提示(Chain-of-Thought Prompting)

零样本CoT(Zero-shot CoT)
自洽性/自一致性(Self-Consistency)。

生成知识提示(Generate Knowledge Prompting)

自动提示工程(Automatic Prompt Engineer)

大模型的内核:Transformer

大模型调参难点
为什么很少直接微调?

1.参数多,内存不容易放下

2.参数多,需要对应更大数据

3.参数多,不容易收敛

4.参数多,i调参时间过长 

参数高效微调方法( Parameter-Efficient Fine-Tuning,PEFT)


Prefix-Tuning/Prompt-Tuning: 在模型的输入或隐层添加k个额外可训练的前缀tokens(这些前缀是连续的伪 tokens,不对应真实的 tokens),只训练这些前缀参数;
Adapter-Tuning: 将较小的神经网络层或模块插入预训练模型的每一层,这些新插入的神经模块称为 adapter (适配器),下游任务微调时也只训练这些适配器参数;
LORA: 通过学习小参数的低秩矩阵来近似模型权重矩阵 W的参数更新,训练时只优化低秩矩阵参数。 领域越垂直超参数越大

大数据类型


数据的分类:

  • 网页数据 ( web data ): 量大。
  • 专有数据 ( curated high-quality corpora ) : 质高。

模型需要数据

  • 基座模型: GLM,GPT具备语言理解能力,但是不具备对话能力
  • 使用数据:非结构化纯文本数据

对话模型:(ChatGLM,ChatGPT在基座模型的基础上,进行对话的专项训练

  • 使用数据: 结构OA数据

 幂律
Scaling Laws简单介绍就是: 随着模型大小、数据集大小和训练强度,模型的性能会提高。并且为了获得最佳性能,所有三个因素必须同时放大。当不受其他两个因素的制约时,模型性能与每个单独的因素都有幂律关系

参数量和数据量之间的关系


当同时增加数据量和模型参数量时,模型表现会一直变好。当其中一个因素受限时,模型表现随另外一个因素增加变好,但是会逐渐衰减。

计算资源不充足,6B到10B比较合适

大模型的分词 ( token)

分词粒度:

  1. 单词分词法:英文 (空格分词) ,中文 (jieba分词 or 分字)
  2. 单字分词法:(字母),中文 (分字)英文
  3. 子词分词法: BPE,WordPiece,Unigram 

模型压缩和加速
深度学习领域提出了一系列的模型压缩与加速方法:

  • 剪枝(Parameter pruning)
  • 低秩分解 (Low-rank factorization)
  • 知识蒸馏(Knowledge distillation)
  • 量化 (quantization) 

量化:用低精度数据表示高精度数据

 大规模语言模型:从理论到实践笔记

LoRA

假设预训练权重为 W0 ∈ R d∗k,可训练参数为 ∆W = BA,其中 B ∈ R d∗r,A ∈ R r∗d。初始化时,矩阵 A 通过高斯函数初始化,矩阵 B 为 零初始化,使得训练开始之前旁路对原模型不造成影响,即参数改变量为 0。对于该权重的输入 x 来说:

h = W0x + ∆Wx = W0x + BAx

 Qlora: Efficient finetuning of quantized llms实验对于 GPT-3 模型,当 r = 4 且仅在注意力模块的 Q 矩阵和 V 矩 阵添加旁路时,保存的检查点大小减小了 10000 倍(从原本的 350GB 变为 35MB),训练时 GPU 显存占用从原本的 1.2TB 变为 350GB,训练速度相较全量参数微调提高 25%。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值