A Smart Region-Growing Algorithm for Single-Neuron Segmentation From Confocal and 2-Photon Dataset

从共焦和2光子数据集进行单神经元分割的智能区域增长算法(翻译)

论文链接:https://www.frontiersin.org/articles/10.3389/fninf.2020.00009/full

github代码链接: https://github.com/AlejandroCallara/SmRG

摘要

在微观尺度上准确地数字化大脑对于研究大脑结构与功能的关系以及记录由于神经病引起的形态变化至关重要。在这里,我们提出了一种新的智能区域增长算法(SmRG),用于在大脑内复杂的3D排列中对单个神经元进行分割。其“区域增长”过程基于通过用混合模型描述共焦采集的像素强度统计信息而确定的同质谓词,从而能够从神经组织的高分辨率图像中准确地重建复杂的3D细胞结构。该算法的结果是一个逻辑值的3D矩阵,用于标识属于分段结构的体素,从而提供了有关神经元的其他有用的体积信息。

介绍

数字化高保真度的大脑神经元图谱是神经科学研究的一项核心工作,也是描绘完整Connectome的关键步骤(Alivisatos等,2012)。此外,根据经验数据进行的单神经元重建可用于生成模型并做出有关高级大脑组织的预测,以及研究树突状和轴突轴的正常发育或记录神经(病理)生理变化(Budd等)等人,2015年)。

共聚焦和双光子显微镜被认为是对三维(3D)生物样本中定义的细胞群体进行成像的最佳选择(Wilt等,2009;Ntziachristos,2010)。由于采用了最新的组织清除解决方案,它们的成像深度以及所采集数据集的质量得以进一步改善,该解决方案通过减少散射源使脑组织对光子透明,从而实现了共焦采集,并具有增强的信噪比和对比度。保持低激光功率时的噪声比(Chung和Deisseroth,2013年; Richardson和Lichtman,2015年; Magliaro等人,2016年)。尽管这些技术和协议与基于荧光的标记技术相结合,可以在微尺度上对大脑的复杂性进行成像,但仍然缺乏能够处理这些数据集的单细胞分割算法(Magliaro et al。,2019)。倡议,例如2009–2010年的DIADEM(轴突和树突形态的数字重建)挑战(吉列等人,2011年)和2015年的BigNeuron项目(Peng等人,2015年)。实际上,已经实现了实现单细胞分割目标的不同方法(Acciai等,2016)。这些工具中的大多数可重构神经突或神经过程的路径,即神经元追踪(Quan等人,2016; Kayasandik等人,2018)使用了不同的方法,从主动轮廓方法(Kass等人,1988 ; Wang等人,2009 ; Baswaraj等人,2012)到分层修剪(Peng等人,2011a ; Xiao和Peng,2013年),以应对许多关键挑战:(i)噪声点导致过度跟踪,(ii)连续心轴之间的间隙导致跟踪不足,以及(iii)非光滑表面违反几何假设的树杆(Liu等,2016)。其中,机器学习方法被广泛认为对图像堆栈中的神经结构分割具有鲁棒性(Januszewski et al。,2018 ;Sakkos et al。,2018)。这些方法主要包括建立一个能够区分前景和背景的分类器,这要归功于通过手动分割的神经元结构的训练数据集获得的先验信息。但是,构建训练数据集非常耗时,特别是因为在处理不同的图像(例如,具有不同形态的神经元类型或具有不同背景/前景特征的堆栈)时需要充实它。最后,许多用于神经元分割的工具和算法主要集中在稀疏标记的数据上,因此它们在代表哺乳动物大脑典型的密集神经元的图像(或体积)上的应用受到限制(Chothani等,2011 ; Wang等。 2011年,2017年; Peng等,2014;Hernandez et al。,2018)。

传统上,神经元重建的结果以a.swc文件格式存储,其中列出了有关特定关注点(例如神经元节点)的空间(即x,y和z坐标)和形态(例如神经突厚度)信息。 。该标准描述了具有许多结构上相连的隔室的神经元形态(例如,分别代表神经元乔化或躯体的圆柱或球体),从而忽略了沿神经元长度的形态和体积信息(Magliaro等,2019)。

共焦和2光子数据集的特征在于面内和面内像素强度的异质性,这是由于光学现象和整个样品中荧光团的不均匀分布引起的(Diaspro,2001)。鉴于这些固有特征,可以通过利用局部方法和实施空间约束的方法(例如区域生长程序(RG))来获得有效数字化堆栈中神经结构的有效程序(Brice和Fennema,1970;Xiao和Peng, 2013年;Acciai等人,2016年)。RG是一种基于像素强度的分割方法,可从属于前景本身的像素(即种子)开始识别前景。基于预定义的规则(通常是同质性谓词)来迭代检查种子的相邻像素,可以对其进行局部估计以确定是否应将其添加到前景中。该程序的执行可能受种子选择和规则的影响(Baswaraj等,2012)。规则的选择可能是不平凡的,特别是考虑到交付通用分割算法。基于混合模型的自适应策略已被成功地用于视频前景/背景分割中(Stauffer和Grimson,1999;1999)。Barnich和Van Droogenbroeck,2010年)。在这里,我们采用了一种类似的方法,该方法考虑了图像形成过程。在这里,我们提出了一种基于估计的新颖RG策略,该策略考虑了图像形成过程(Calapez和Rosa,2010年),以定义所讨论图像中信号分布的固有属性。

我们的理由是,共焦和2光子显微镜是基于对焦平面中的连续点进行采样,以重现样品中荧光探针的空间分布。因此,每个像素都包含一个采样间隔内检测到的荧光的离散量度,以光子计数和一定量的噪声表示,这些噪声源自不同的来源(Pawley,2006;Calapez和Rosa,2010)。因此,统计方法代表了描述共焦或2光子数据集的自然方法。已经提出了不同的模型来描绘共焦图像的特性(Calapez等,2002;Pawley,2006)。)。具体而言,已经提出了混合模型(MM)作为典型的背景和低荧光分布的尖峰和长尾巴的最佳描述(Calapez和Rosa,2010)。

考虑到这些考虑因素,我们开发了一种新的智能区域增长算法(SmRG),该算法将RG过程与描述信号统计信息的MM相结合,以计算局部均质性谓词(即局部阈值),以迭代地增长要分割的结构。在这里,我们描述了用于单神经元分割的SmRG工作流程。然后,我们评估其在从共聚焦和2光子数据集中分割不同神经元类型的性能,并将结果与​​采用黄金标准人工重建方法获得的结果进行比较。此外,我们将我们的算法与在神经元重建领域广泛使用的最新技术(SoA)工具进行了比较。

翻译的快捷方式

用谷歌浏览器打开该论文的链接: https://www.frontiersin.org/articles/10.3389/fninf.2020.00009/full

直接转成中文
在这里插入图片描述
就可以看了
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值