【简述与推导】似然函数,最大似然估计,条件概率,全概率,贝叶斯概率

目录

1. 似然(likehood)与最大似然估计

2. 条件概率(conditional probability),全概率(total probability),和贝叶斯概率(Bayes probability)

2.1 联合概率==>条件概率:

2.2 联合概率==>全概率公式:

2.3 条件概率+联合概率==>贝叶斯概率公式:


1. 似然(likehood)与最大似然估计

似然从字面很难理解什么意思,这里借助了知乎https://www.zhihu.com/question/54082000和quora上的一个回答 What is the difference between probability and likelihood?的回答。不仅回答了似然是什么还指出了似然和概率的区别。

这里作简短概括:

似然和概率同宗同源,像一个双胞胎一样,所以很容易搞混:

链接中给了一个不错的比喻,将概率密度函数和似然函数之间的关系,类比成 幂函数和 指数函数之间的关系。假设一个函数为  ,这个函数包含两个变量,a,b。如果你令b=2,这样你就得到了一个关于a的二次幂函数,即 。当你令a=2时,你将得到一个关于b的指数函数,即 

如此似然和概率他们俩又性格各异(互逆):

1.1  似然是知道事件结果推参数。举个栗子:如历史上,美国数学家Feller为了得知抛硬币正反的概率参数,一口气抛了10000次硬币,得到结果是4972次正面和5021次反面(事件结果),由此可得到一个硬币正反的概率参数的简单结果:正面概率约0.497,反面约为0.502。

.1.2  概率是知道参数推事件结果。举个栗子:小明知道了Feller大神的实验结果(概率参数),想要算一下抛硬币连续两次正再连续两次反面额概率,那么就是0.497*0.497*0.502*0.502 概率约为0.062(事件结果)。

那么最大似然估计又是什么呢

回到上面的1.1例子中。令Feller的抛硬币实验次数为N次,其中事件结果是m次为正面,n次为反面(这里有N=m+n):

那么得到了该次抛硬币实验的似然函数:

L(\theta|x)=\theta ^{m}*(1-\theta )^{n}                                                                                                             (式1.1)

其中x代表这次抛硬币N次的事件的已知结果,\theta为正面朝上的概率参数。求这个似然函数得最大值就是最大似然估计,它代表了有怎样的参数才最有可能复现这次已知事件。Feller抛硬币次数太多,不便于计算,我们取其中10次抛硬币结果:

x=HHTTHTHHHH,这是一个正反序列,套用(式1.1),可得L(\theta|x)=\theta ^{7}*(1-\theta )^{3},这是一个一元多次幂函数,绘制如图1.1函数图:<

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值