EM算法似然函数的推导

EM算法似然函数的推导

现在要对似然函数 Lθ=logzP(YZ,θ)P(Zθ) 进行求解极大值,由于这里存在求和的形式,联想到期望的求和,这里是关于变量Z的期望,并且联想到和期望有关的不等式有Jensen不等式,因此引入Z的概率分布Q(z)作为期望中的变量X的概率分布,而剩下的作为期望中的自变量X。即似然函数如下变化。

Lθ=logzQ(Z)P(YZ,θ)P(Zθ)Q(Z)
Jensen不等式有这样的定义,对于一个函数f,如果这个函数是凸函数,也就是f的二阶导数大于0,那么存在 E[f(x)]f(E[X]) ,如果这个函数是凹函数,也就是f的二阶导数小于0,那么存在 E[f(x)]f(E[X]) ,如果这个函数是常值函数,那么存在 E[f(x)]=f(E[X]) 。似然函数可以看成 log(E[X]) ,由于对数函数的二阶导数小于0,因此
LθzQ(Z)logP(YZ,θ)P(Zθ)Q(Z)
现在想让式中的等号成立,那么必须保证X是常值函数,也就是 P(YZ,θ)P(Zθ)Q(Z)=C ,这样可以获得 Q(Z)=1CP(YZ,θ)P(Zθ) 由于Q(Z)是关于自变量X的概率分布,那么应该保证Q(Z)概率求和为1,即 C=zP(YZ,θ)P(Zθ) ,因此可得 Q(Z)=P(YZ,θ)P(Zθ)zP(YZ,θ)P(Zθ) 这样根据逆概率公式 Q(Z)=P(ZY,θ)
综上可得
L(θ)B(θθ)=zP(ZY,θ)logP(Y,Zθ)P(ZY,θ)

这里B的前一个参数是后验概率分布的参数,后一个参数是联合概率分布的参数,B是极大似然估计的下限函数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值