深度学习
文章平均质量分 74
medusa_zj
这个作者很懒,什么都没留下…
展开
-
yolov5代码解读(一)
yolov5代码解读(一)common.py部分普通卷积Conv深度可分离卷积DWConv跨尺度连接1---Bottleneck跨尺度连接2---BottleneckCSP跨尺度连接3---C3空间金字塔结构---SPPFocus结构common.py部分首先插入一张YOLOV5 结构图普通卷积Conv即图中CBL部分class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1原创 2021-11-08 17:54:26 · 3661 阅读 · 6 评论 -
kitti数据集处理
kitti数据集处理数据集处理更改类别名生成xml标签数据集处理目标识别KITTI数据集处理更改类别名import globimport string#txt_list = glob.glob('./KITTITrainLabels/label_2/*.txt') # 原始kitti labels文件夹所有txt文件路径txt_list = glob.glob('C:/Users/Z6000/Desktop/kitti/label_2/*.txt')def show_category(tx原创 2020-12-20 17:33:22 · 892 阅读 · 2 评论 -
注意力机制
注意力机制在CV中应用注意力机制Squeeze-and-Excitation Networks(SENet)三级目录注意力机制注意力机制源于对人类视觉的研究。视觉注意力机制是人类视觉所特有的大脑信号处理机制。在认知科学中,由于对处理信息大小的限制,人类会选择性的关注信息的一部分,而后对这些部分投入更多的注意力资源,而忽略其他可见的信息。人类视觉注意力机制极大地提高了视觉信息处理的效率和准确性。最早,注意力机制被使用在自然语言处理领域,后来在图像识别等深度学习任务中也得到广泛应用。Squeeze-an原创 2020-11-04 17:23:24 · 1050 阅读 · 0 评论 -
yolov3代码详解(七)
Pytorch | yolov3代码详解七test.pytest.pyfrom __future__ import divisionfrom models import *from utils.utils import *from utils.datasets import *from utils.parse_config import *import osimport sysimport timeimport datetimeimport argparseimport tqdm原创 2020-07-31 09:10:10 · 954 阅读 · 0 评论 -
yolov3代码详解(六)
Pytorch | yolov3代码详解六train.pytrain.pyfrom __future__ import divisionfrom models import *from utils.logger import *from utils.utils import *from utils.datasets import *from utils.parse_config import *from test import evaluatefrom terminaltables i原创 2020-07-31 09:09:16 · 767 阅读 · 0 评论 -
yolov3代码详解(五)
Pytorch | yolov3代码详解五detect.pydetect.pyfrom __future__ import divisionfrom models import *from utils.utils import *from utils.datasets import *import osimport sysimport timeimport datetimeimport argparsefrom PIL import Imageimport torchfro原创 2020-07-31 09:08:22 · 581 阅读 · 0 评论 -
yolov3代码详解(四)
Pytorch | yolov3代码详解四models.pymodels.pyfrom __future__ import divisionimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variableimport numpy as npfrom utils.parse_config import *from utils.utils import bu原创 2020-07-31 09:05:23 · 645 阅读 · 0 评论 -
yolov3代码详解(三)
Pytorch | yolov3代码详解三datasets.pydatasets.pyimport globimport randomimport osimport sysimport numpy as npfrom PIL import Imageimport torchimport torch.nn.functional as Ffrom utils.augmentations import horisontal_flipfrom torch.utils.data import原创 2020-07-31 09:04:21 · 681 阅读 · 0 评论 -
yolov3代码详解(二)
Pytorch | yolov3代码详解二utils.pyutils.pyfrom __future__ import divisionimport mathimport timeimport tqdmimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variableimport numpy as npimport matplotlib.pyplot as原创 2020-07-31 09:01:53 · 681 阅读 · 0 评论 -
yolov3代码详解(一)
Pytorch | yolov3代码详解一augmentations.pylogger.pyparse_config.py说明:仅供自己学习记录,有参考其他博主,侵删代码来源:eriklindernoren/PyTorch-YOLOv3参考链接参考链接augmentations.pyimport torchimport torch.nn.functional as Fimport numpy as np############################################原创 2020-07-31 08:59:46 · 1154 阅读 · 0 评论 -
YOLO
YOLO之前算法DPM系统R-CNNYOLOV1核心思想具体解释流程转自之前算法YOLO之前的物体检测方法(如R-CNN,Fast-R-CNN,Faster-R-CNN等):(1)通过region proposal产生大量的可能包含待检测物体的 potential bounding box(2)用分类器去判断每个 bounding box里是否包含有物体,以及物体所属类别的 probability或者 confidence。DPM系统要使用一个滑窗(sliding window)在整张图像上均原创 2020-07-17 08:59:10 · 490 阅读 · 0 评论 -
darknet的yolov3测试以及评价指标
评价指标评价指标Avg_loss Avg IOU一二批量测试一生成对测试集的检测结果针对测试集,批量测试图片并将测试的图片显示结果保存在自定义的文件夹下AP,mAP计算reval_voc_py.py和voc_eval_py.py评价指标cankaocankao2Avg_loss Avg IOU一训练的过程,保存训练日志的训练执行命令./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg scripts/darknet53.conv.原创 2020-06-08 17:03:39 · 5392 阅读 · 9 评论 -
数据格式转换
labelImg标注yolo的txt格式转换为xml格式格式介绍txt格式xml格式格式转换准备第一步第二步生成list.txt生成xml格式第一步第二步验证格式介绍txt格式xml格式格式转换准备第一步首先建立一个文件夹,如new在新建立的文件夹下建立两个文件夹:data,image。同时将labeling.exe移入,方便之后验证。建立完如下:附:注意打开labeling.exe不能有中文路径,因此,自己新建的文件夹(new)也不能有中文路径。第二步将自己的图片放入image原创 2020-05-21 22:23:32 · 1485 阅读 · 0 评论 -
深度学习名词解释
深度学习评价指标评价指标准确率、精确率、召回率mAP评价指标准确率、精确率、召回率True Positive(真正,TP):将正类预测为正类数True Negative(真负,TN):将负类预测为负类数False Positive(假正,FP):将负类预测为正类数误报 (Type I error)False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)精确率:是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两原创 2020-05-21 10:22:36 · 892 阅读 · 0 评论 -
SSD的运行及训练自己数据集
ubuntu18.04下SSD的运行及训练自己数据集caffe的SSD运行及训练自己数据集运行一、下载源码二、文件配置三、编译caffe的SSD运行及训练自己数据集运行一、下载源码git clone https://github.com/weiliu89/caffe.git下载完成后是一个caffe文件夹,如图:然后执行:cd caffegit checkout ssd出现...原创 2020-05-08 10:29:46 · 2155 阅读 · 0 评论 -
ubuntu18.04下darknet的yolov3运行以及训练
darknet的yolov3运行ubuntu18.04环境下的darknet+yolov3环境darknet的安装及测试1、下载代码2、下载权重3、测试附测试自己数据集1、下载代码ubuntu18.04环境下的darknet+yolov3环境ubuntu18.04cuda:10.0.120cudnn:opencv:3.2.0darknet的安装及测试官网1、下载代码git cl...原创 2020-04-27 14:43:29 · 4185 阅读 · 2 评论 -
widerface数据集下载及转voc2007格式
widerface数据集转为voc2007格式(转)widerface数据集下载转为voc2007格式百度云下载转自于该博客widerface数据集下载数据集下载下载这四个文件转为voc2007格式from skimage import ioimport shutilimport randomimport osimport string headstr = """\&l...原创 2020-01-09 19:33:38 · 1095 阅读 · 2 评论 -
tensorflow实现yolo
tensorflow实现yolo运行yolo的demo使用voc2007数据集训练模型源码运行yolo的demogithub下载YOLOv3的tensorflow实现代码 git clone https://github.com/YunYang1994/tensorflow-yolov3.git安装一些依赖 cd tensorflow-yolov3-master pip i...原创 2019-12-26 13:01:24 · 1575 阅读 · 0 评论 -
卷积神经网络(CNN)
卷积神经网络(CNN)经典卷积神经网络(CNN)卷积神经网络结构从神经网络到卷积神经网络(CNN)传统神经网络CNNCNN结构输入层卷积层激励层池化层全连接层LeNet-5模型INPUT层-输入层C1层-卷积层S2层-池化层(下采样层)C3层-卷积层S4层-池化层(下采样层)C5层-卷积层F6层-全连接层经典卷积神经网络(CNN)LeNet-5模型:第一个成功应用于数字数字识别的卷积神经网络模...原创 2019-12-12 18:44:18 · 893 阅读 · 0 评论