HOG特征简介
HOG 全称为 Histogram of Oriented Gradients ,即方向梯度的直方图。HOG 是由 Navneet Dalal & Bill Triggs 在 CVPR 2005发表的论文中提出来的,目的是为了更好的解决行人检测的问题。先来把这几个字拆开介绍,首先,梯度的概念和计算梯度的方法已经在前一篇文章中介绍了,方向梯度就是说梯度的方向我们也要利用上,在前一篇中我们只是用到了梯度大小,直方图是个新的概念,所以下面先来介绍直方图。
一、直方图
直方图类似于小学(初中?)时学过的频率分布图,是用来表达图像的一种统计特征的,它的图形跟条形图一样。
横轴取了一定间隔的值的范围,纵轴表示某个区间的值有多少个(频数),举个简单的例子我们来动手算一次。
假如有这么一个3x3的矩阵:
要算它的直方图,我们先要选定一个取值的间隔,比如取10,那么0-9看成一类、10-19看成一类,如此类推,那么0-9有{6、5、9} 3个,10-19有{12、17}两个,用excel画出来看看。
那么方向梯度的直方图,统计的就是某个方向区间内的梯度的大小(voting vector,不知道怎么翻译,投票向量?)。
二、HOG详解
先从 《Concise Computer Vision》上盗个图方便我介绍计算过程。
左边的原图是个疑似是双马尾萝莉塔装的妹子的灰度图,也别问我为何这么熟练,最右边的就是我们上一期使用的 Sobel 算子对原图卷积以后得到的梯度图。
先看红色的格子:
红色的格子称为 cell(细胞、监牢),是计算直方图的基本单位,也是个固定大小的格子,典型值是 8x8 个像素。在这些所有的 8x8 的 cell 上单独计算直方图,我们知道直方图要自己指定 x 轴设置多少个区间,典型值是 9,x 轴表示的是梯度的方向,也就是把梯度方向割成 9 个区间,梯度方向的范围我们指定为 0 ~ 180°,也就是每个区间范围是 20°,像这样:
这样子我们就把梯度方向的粒度变粗了,有利于适应方向的变化。
我们来计算一个退化的情况,假设 cell 的大小是 3x3,bin(直方图区间)设为 9 个,
梯度幅值是这样的:
梯度方向是这样的:
各个区间先列出来,分别是:0-20、20-40、40-60、60-80、80-100、100-120、120-140、140-160、160-180,区间的右端点是不包含的。
我们计算的时候先看方向矩阵,首先左上角的值是 90度,那就落在了 80-100 的区间,幅值矩阵对应位置的值是 6,因此 80-100 这个区间的 y 轴值加 6。再看方向矩阵的第一行第二列,也是 90,幅值矩阵对应值是 12,于是 80-100 这个区间再加 12,现在总的值是 18 了,相信到这里你已经看懂了,如此类推继续算下来,就可以得到这样一个直方图:
计算直方图的函数代码实现是这样的:
'''
函数名称:calc_hist
功能:计算直方图
输入:
mag 幅值矩阵
angle 角度矩阵,范围在 0-180
bin_size 直方图区间大小
输出:
hist 直方图
'''
def calc_hist(mag, angle, bin_size=9):
hist = np.zeros((bin_size,), dtype=np.int32)
bin_step = 180 // bin_size
bins = (angle // bin_step).flatten()
flat_mag = mag.flatten()
for i,m in zip(bins, flat_mag):
hist[i] += m
return hist
有了这个函数就可以做计算 cell 的部分,对应这些代码:
# 将图像切成多个cell
cell_size = 8
bin_size = 9
img_h, img_w = gray.shape[:2]
cell_h, cell_w = (img_h // cell_size, img_w // cell_size)
cells = np.zeros((cell_h, cell_w, bin_size), dtype=np.int32)
for i in range(cell_h):
cell_row = cell_size * i
for j in range(cell_w):
cell_col = cell_size * j
cells[i,j] = calc_hist(mag[cell_row:cell_row+cell_size, cell_col:cell_col+cell_size],
angle[cell_row:cell_row+cell_size, cell_col:cell_col+cell_size], bin_size)
这样子就完成了 cell 部分的计算,接下来看黄格子。
黄色的格子称为 block,是由多个 cell 组合而成的,典型的组合方式是 2x2 个 cell 组成成一个 block,也就是跟图示的一样。我们知道每个 cell 上面都有一个 9 维的表示直方图大小的向量,那么一个 block 上就有 2x2x9 = 36维的向量,黄格子要做的操作就是把每一次选中的这 36 维向量做规范化(normalization),得到新的 36 维向量。
规范化的方法有多种可选:
我通常使用的是 L2-Norm, 也就是先对整个向量的各个元素都求平方然后求和、开根号 作为规范化因子,然后对原向量中每一个元素都除以这个规范化因子。
L2 规范化的函数是这样的:
# 归一化cells
def l2_norm(cells):
block = cells.flatten().astype(np.float32)
norm_factor = np.sqrt(np.sum(block**2) + 1e-6)
block /= norm_factor
return block
利用之前得到的 cells 和规范化函数就可以写 黄格子 实现的操作了:
# 多个cell融合成block
block_size = 2
block_h, block_w = (cell_h-block_size+1, cell_w-block_size+1)
blocks = np.zeros((block_h, block_w, block_size*block_size*bin_size), dtype=np.float32)
for i in range(block_h):
for j in range(block_w):
blocks[i,j] = l2_norm(cells[i:i+block_size, j:j+block_size])
把这么多个 block 的 36维向量拼起来就是 HOG 特征描述子(descriptor)了,在这里来说就是把 blocks 这个 3 维的矩阵摊平,也只要一行代码:
blocks = blocks.flatten()
我把整个 HOG 的计算过程封成了一个函数,是这样的:
# 计算HOG特征
def calc_hog(gray):
''' 计算梯度 '''
dx = cv2.Sobel(gray, cv2.CV_16S, 1, 0)
dy = cv2.Sobel(gray, cv2.CV_16S, 0, 1)
sigma = 1e-3
# 计算角度
angle = np.int32(np.arctan(dy / (dx + sigma)) * 180 / np.pi) + 90
dx = cv2.convertScaleAbs(dx)
dy = cv2.convertScaleAbs(dy)
# 计算梯度大小
mag = cv2.addWeighted(dx, 0.5, dy, 0.5, 0)
print('angle\n', angle[:8,:8])
print('mag\n', mag[:8,:8])
''' end of 计算梯度 '''
# 将图像切成多个cell
cell_size = 8
bin_size = 9
img_h, img_w = gray.shape[:2]
cell_h, cell_w = (img_h // cell_size, img_w // cell_size)
cells = np.zeros((cell_h, cell_w, bin_size), dtype=np.int32)
for i in range(cell_h):
cell_row = cell_size * i
for j in range(cell_w):
cell_col = cell_size * j
cells[i,j] = calc_hist(mag[cell_row:cell_row+cell_size, cell_col:cell_col+cell_size],
angle[cell_row:cell_row+cell_size, cell_col:cell_col+cell_size], bin_size)
# 多个cell融合成block
block_size = 2
block_h, block_w = (cell_h-block_size+1, cell_w-block_size+1)
blocks = np.zeros((block_h, block_w, block_size*block_size*bin_size), dtype=np.float32)
for i in range(block_h):
for j in range(block_w):
blocks[i,j] = l2_norm(cells[i:i+block_size, j:j+block_size])
return blocks.flatten()
假设输入的图片是 64 x 128 的,cell 就会有 8 x 16 = 128个,block 就有 (8-2+1) x (16 - 2 + 1) = 105 个,每个 block 有 36 维向量,总共就是 105 x 36 = 3780维向量,这个向量就是对应这张图片的 HOG 特征。用其他特征得到的东西也是大同小异,都是不同大小表示不同信息的特征。
特征相当于该物体的 ID,如果同类的物体的特征很相似,我们就说这个特征至少对于该类物体的区分度很好。拿现在很火的深度神经网络来说,用它做人脸识别的时候,也是输入图片,输出这么一个长长的向量,如果对于同一个人,这些产生的向量的距离很近,而对于不同人的距离则很远,就说这个神经网络精度很高,但本质的流程和这些人工设计的特征没有任何区别。
介绍完了 HOG特征,私以为徒有这堆向量也没什么卵用,所以想做个示范的应用,但是篇幅有限,知识点不能完全覆盖到,所以接下来讲的东西哪里不懂的另外搜索一下就好。
既然做行人识别,那就看看 HOG 特征对于行人的区分度怎么样。
三、特征区分度
做这个事情之前首先要介绍一下我使用的公开数据集 INRIA Person,这是一个公开的行人数据集,里面分为正样本和负样本,正样本几乎都是直立的老外行人,负样本是一些风景图片,可以给大家看一眼,这个数据集也能从网上直接下载。
我会把所有图片缩放到高度 128 和宽度 64,因此每张图片的 HOG 特征长度是 3780,如果我把所有这些 3780 维的向量都放在 3780 维空间上去看它们的分布,可能正样本会聚集在一堆,负样本聚在另一堆,这样是最好的,但是我们没办法可视化 3780 维的空间,所以我的做法是用 PCA(主成分分析)把它们压到二维,在二维平面上去看。
核心代码是这样的,需要 sklearn 和 scipy,可以通过 pip 安装:
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
# PCA 降维
pca = PCA(n_components=2, copy=True)
data_size = 500
pos_features = pca.fit_transform(pos_features[:data_size])
neg_features = pca.fit_transform(neg_features[:data_size])
# 显示
plt.plot(pos_features[:,0], pos_features[:,1], 'ro')
plt.plot(neg_features[:,0], neg_features[:,1], 'bo')
plt.show()
但是得到的图形是这样的:
蓝色点是行人,红色点是背景。
emmmm, 好像打脸了,(逃
打脸的原因可能有两个,一个是降维降太多了,二维信息不足以表达原来的 3000 多维的结构;二是我们看这个图形的角度不对 ,正所谓横看成岭侧成峰。假设这是两坨饼,红色一坨蓝色一坨,现在看起来是红色的饼叠在了蓝色的饼上面,所以正确的看法应该是,我们把红色的饼拿起来,然后从侧面去看,就会变成这样:
这样子不就分成两坨了嘛~
虽然听起来像是在胡说八道,但是所谓什么 SVM 模型啊,深度学习、神经网络等等等等,干的就是这样一件事,改变我们看数据的角度,直到在我们看来是可以一刀切开的两坨,说得屌一点就是线性可分。
四、SVM
所以下面就来训练一个 SVM 模型。
from sklearn import svm
# 合并特征
features = np.concatenate((pos_features[:data_size], neg_features[:data_size]))
labels = np.zeros((data_size*2,), dtype=np.int32)
labels[:data_size] = 1
# SVM分类器
lin_clf = svm.LinearSVC()
lin_clf.fit(features, labels)
features 是正样本和负样本的特征合并起来的一个大矩阵,labels 表示的是每个特征对应的是什么类别,这里我设置了 1 对应行人,0 对应背景。为什么需要 labels,因为训练模型要用,训练模型跟老师教学生学习很像,我们要先给学生一吨的题,并且告诉他们背后有答案,自己对,这些题就是 features,答案就是 labels,于是他们做完对完这些题以后我们就希望他们能够举一反三,看到新的题的时候不方。lin_clf 就是 SVM模型,使用 fit 方法训练,稍等几秒就训练完了。
下面就用照片来测试一下吧。
测试代码是:
lena = cv2.imread('lena.jpg')
lena = cv2.resize(lena, (64,128))
lena = cv2.cvtColor(lena, cv2.COLOR_BGR2GRAY)
lena_feature = calc_hog(lena)
pred_result = lin_clf.predict(np.array([lena_feature]))
结果 pred_result 当然是 1 了,如果不是我就不会放上来了。
总的demo代码:
# coding: utf-8
import os
import cv2
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D
from sklearn import svm
'''
函数名称:calc_hist
功 能:计算直方图
输 入:
mag 幅值矩阵
angle 角度矩阵,范围在 0-180
bin_size 直方图区间大小
输 出:
hist 直方图
'''
def calc_hist(mag, angle, bin_size=9):
hist = np.zeros((bin_size,), dtype=np.int32)
bin_step = 180 // bin_size
bins = (angle // bin_step).flatten()
flat_mag = mag.flatten()
for i,m in zip(bins, flat_mag):
hist[i] += m
return hist
# 归一化cells
def l2_norm(cells):
block = cells.flatten().astype(np.float32)
norm_factor = np.sqrt(np.sum(block**2) + 1e-6)
block /= norm_factor
return block
# 计算HOG特征
def calc_hog(gray):
''' 计算梯度 '''
dx = cv2.Sobel(gray, cv2.CV_16S, 1, 0)
dy = cv2.Sobel(gray, cv2.CV_16S, 0, 1)
sigma = 1e-3
# 计算角度
angle = np.int32(np.arctan(dy / (dx + sigma)) * 180 / np.pi) + 90
#将其转回原来的uint8格式,否则图像无法显示
dx = cv2.convertScaleAbs(dx)
dy = cv2.convertScaleAbs(dy)
# 计算梯度大小
mag = cv2.addWeighted(dx, 0.5, dy, 0.5, 0)
#print('angle\n', angle[:8,:8])
#print('mag\n', mag[:8,:8])
''' end of 计算梯度 '''
if DEBUG:
cv2.imshow("mag", mag)
# 将图像切成多个cell
cell_size = 8
bin_size = 9
img_h, img_w = gray.shape[:2]
cell_h, cell_w = (img_h // cell_size, img_w // cell_size)
cells = np.zeros((cell_h, cell_w, bin_size), dtype=np.int32)
for i in range(cell_h):
cell_row = cell_size * i
for j in range(cell_w):
cell_col = cell_size * j
cells[i, j] = calc_hist(mag[cell_row : cell_row + cell_size, cell_col : cell_col + cell_size],
angle[cell_row : cell_row + cell_size, cell_col : cell_col+cell_size], bin_size)
#print('cells\n', cells)
#print('cells\n', cells[0])
#print('cells\n', cells.shape)
# 多个cell融合成block
block_size = 2
block_h, block_w = (cell_h - block_size + 1, cell_w - block_size + 1)
blocks = np.zeros((block_h, block_w, block_size * block_size * bin_size), dtype=np.float32)
for i in range(block_h):
for j in range(block_w):
blocks[i,j] = l2_norm(cells[i : i + block_size, j : j + block_size])
return blocks.flatten()
def visualize2(pos_features, neg_features):
# PCA 降维
pca = PCA(n_components=2, copy=True)
pos_features = pca.fit_transform(pos_features)
neg_features = pca.fit_transform(neg_features)
# 显示
plt.plot(pos_features[:, 0], pos_features[:, 1], 'ro')
plt.plot(neg_features[:, 0], neg_features[:, 1], 'bo')
plt.show()
def getfeatures(pos_image_path, neg_image_path, data_size):
pos_features = []
neg_features = []
images = os.listdir(pos_image_path)[:data_size]
for image in images:
print (pos_image_path + '/' + image)
img = cv2.imread(pos_image_path + '/' + image)
img = cv2.resize(img, (64,128))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blocks_flat = calc_hog(gray)
pos_features.append(blocks_flat)
print ('----------------------------')
images = os.listdir(neg_image_path)[:data_size]
for image in images:
print (neg_image_path + '/' + image)
img = cv2.imread(neg_image_path + '/' + image)
img = cv2.resize(img, (64,128))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blocks_flat = calc_hog(gray)
neg_features.append(blocks_flat)
return [pos_features, neg_features]
def svmc(pos_features, neg_features, data_size):
features = np.concatenate((pos_features[: data_size], neg_features[: data_size]))
labels = np.zeros((data_size * 2,), dtype=np.int32)
labels[:data_size] = 1
lin_clf = svm.LinearSVC()
lin_clf.fit(features, labels)
return lin_clf
def predict(images, lin_clf):
pred_results = []
for image in images:
img = cv2.imread(image)
img = cv2.resize(img, (64,128))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_feature = calc_hog(img)
pred_result = lin_clf.predict(np.array([img_feature]))
pred_results.append(pred_result)
print(pred_results)
return pred_results
def main(pos_image_path, neg_image_path, test_image_paths, data_size):
pos_features, neg_features = getfeatures(pos_image_path, neg_image_path, data_size)
lin_clf = svmc(pos_features, neg_features, data_size)
pred_results = predict(test_image_paths, lin_clf)
for idx in range(len(pred_results)):
print('test_image_paths: {} pred_result: {}'.format(test_image_paths[idx], pred_results[idx]))
DEBUG = False
if __name__ == '__main__':
data_size = 500
pos_image_path = 'data/INRIAPerson/train_64x128_H96/pos'
neg_image_path = 'data/INRIAPerson/train_64x128_H96/neg'
test_image_path = 'data/INRIAPerson/test_64x128_H96'
#crop001501a:1 00001147:0
test_images = [test_image_path + '/pos/crop001501a.png', test_image_path + '/neg/00001147.png']
'''
pos_image_path = 'DATA/ZJU/Dataset_A_Eye_Images/closedEyesTraining'
neg_image_path = 'DATA/ZJU/Dataset_A_Eye_Images/openEyesTraining'
test_image_path = 'DATA/ZJU/Dataset_A_Eye_Images'
#ct0001:1 ht0001:0
test_images = [test_image_path + '/closedEyesTest/ct0001.jpg', test_image_path + '/openEyesTest/ht0001.jpg']
'''
#visualize3(pos_image_path, neg_image_path, data_size)
main(pos_image_path, neg_image_path, test_images, data_size)
参考链接:https://www.jianshu.com/p/ed21c357ec12