【NLP】TorchText介绍与(搜狗语料)文本语料处理案例

本文介绍了如何使用TorchText处理文本数据,特别是针对搜狗实验室提供的新闻数据进行预处理,包括Field对象、Dataset和迭代器的使用,以及数据预处理的步骤。文章还展示了如何构建词表和构建迭代器,为文本分类任务做好准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原创公众号(谢谢支持):AIAS编程有道

背景

自然语言处理领域包含很多任务,在日常的任务中序列标注、文本分类等任务也特别多。真正进入项目工程的时候你会发现,我们大多会花费很多时间在数据源处理(读取,切分词,清洗,标准化,特征提取等操作)上。在pytorch中众所周知的数据处理包是处理图片的torchvision,而处理文本的少有提及,快速处理文本数据的包也是有的,那就是torchtext。当然原文档内容较多,这里也只是介绍一些核心内容,后面有机会的话再详细(尝试翻译一下)介绍。除此之外还参考了TorchText用法示例及完整代码。废话不多说,来看看如何使用吧。

ps:需要自己准备好相关的环境哦(pip install torchtext)

1 torchtext概述

站在处理模型训练的角度上,我们需要的数据集是数字化的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智绘山河

你的鼓励可能解决你下一个问题

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值