NVIDIA再现谜之刀法,RTX 4060Ti新增16G版

AMD计划于5月25日发布RX7600XT和7600显卡,规格相比上代RX6600变化不大。NVIDIA的RTX4060Ti则提前至5月24日发布,包括8GB和16GB版本,CUDA核心减少,显存位宽被削减。RTX4060Ti16GB版和RTX4060可能在7月上市,且新款RTX4060系列显卡首次采用PCIe4.0*8通道,节省成本但可能影响性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着上一代库存逐渐清理到位,苏妈与老黄终于要把新一代主流级显卡掏出来了。

根据外网消息,AMD 这边主要是 RX 7600XT 与 7600 等型号,发布日期定为 5 月 25 日。

AMD 保密措施做得挺到位的,目前除了部分厂商爆出的包装与产品图外,详细规格暂时了解并不多。

来源:videocardz

据说 RX 7600 具有 32 个 RDNA 3 计算单元、2048 个流处理器、8G GDDR6 显存。

来源:videocardz

整体规格相比上代 RX 6600 并没有什么实质性提升,妥妥的挤牙膏了。

咱开个价,249 美元,希望 AMD 不要不识好歹!

NVIDIA 这边已确定 5 月 24 日发布 RTX 4060 Ti 8G。

原本计划日期是 5 月 29 日来着,就为了比 AMD 提前这么一天,硬是改成了 24 日。

不管你俩咋相爱相杀,反正咱消费者不介意早点看到产品。

RTX 4060 Ti 规格咱们之前讲过,在老黄倒吸牙膏操刀下果然没让我们失望。

来源:videocardz

CUDA 核心数大砍,显存位宽阉割麻了,大家也有吐槽这个级别显卡仍用的 8G 显存。

不过似乎是为了回应玩家需求?老黄随后又整出了 RTX 4060 Ti 16GB 版。

来源:videocardz

当然也仅限于增加显存容量,CUDA 数量不变,显存位宽依然是可怜的 128-bit。

核心从 4060 Ti 8G 的 AD 106 - 350 换成了 AD 106 – 351,功耗可能会增加那么一丢丢。

RTX 4060 Ti 16G 版上市日期则推迟在 7 月份,预计与 RTX 4060 同一节点。

另外根据 VideoCards 爆料,RTX 4060 三款显卡首次在 PCIe 接口上砍了一刀,仅支持 8 通道。

例如隔壁 AMD RX6600XT 为 PCIe 4.0 * 8 通道,RX6500XT 甚至为 4 通道。

NVIDIA 这边倒还是第一次出现对 PCIe 通道下手。

虽说 PCIe 4.0 * 8 带宽也能 RTX 4060 Ti 这个级别显卡需求。

但要放在 PCIe 3.0 主板上就会降级为 PCIe 3.0 * 8,性能多少会受到些影响。

这么做的好处只有一个,节省成本!

这节省下来的成本能不能体现在最终售价上,这就不得而知了。

### 安装和配置多本DeepSeek #### 环境准备 为了确保能够在 NVIDIA GeForce RTX 4060 Ti 16GB GPU 上顺利部署多个本的 DeepSeek,环境准备工作至关重要。这包括但不限于操作系统的选择、CUDA 和 cuDNN 的安装以及 Python 虚拟环境的设置。 对于 CUDA 本的选择应匹配所使用的 GPU 架构。GeForce RTX 4060 Ti 基于 Ada Lovelace 架构,通常推荐使用最新的稳定 CUDA 来获取最佳性能和支持[^1]。 ```bash # 更新系统包列表并安装必要的依赖项 sudo apt-get update && sudo apt-get install -y build-essential cmake git wget unzip libsm6 libxext6 libxrender-dev # 下载并安装适合Ada架构的CUDA工具包 wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` #### 创建独立的工作空间 针对每一个想要部署的不同本 DeepSeek 模型创建单独的工作目录是非常重要的做法。这样做不仅有助于隔离各个项目的文件结构,还能简化后续管理流程中的许多操作。 假设要分别部署 `v1` 和 `v2` 两个本,则可以在主项目文件夹内建立对应的子文件夹: ```bash mkdir ~/deepseek_projects/{v1,v2} cd ~/deepseek_projects/v1/ ``` #### 设置Python虚拟环境 为每个工作区设立专属的 Python 虚拟环境能有效防止库冲突问题的发生,并使得不同本间的切换更加便捷高效。 ```bash python3 -m venv ./venv_v1 source ./venv_v1/bin/activate pip install --upgrade pip setuptools wheel torch torchvision torchaudio cudatoolkit=11.7 deactivate ``` 重复上述命令以相同方式为其他本(如 `v2`)构建各自的虚拟环境。 #### 部署特定本的DeepSeek模型 进入对应的工作区后激活相应的 Python 环境,接着按照官方文档指引下载目标本的预训练权重文件并加载至程序中完成初始化过程。 考虑到资源分配效率的问题,在单张 16 GB 显存大小的 GPU 设备上同时运行多个大型 NLP 模型可能会遇到内存不足的情况。因此建议采用按需启动的方式——即仅当需要用到某个具体本时才将其加载入显存;而在不使用期间则卸载释放占用的空间给其它进程使用。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def load_model(version='latest'): model_name_or_path = f'deepseek-{version}' device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device) return model, tokenizer model_v1, tokenizer_v1 = None, None if some_condition_for_version_1: model_v1, tokenizer_v1 = load_model('v1') model_v2, tokenizer_v2 = None, None if some_other_condition_for_version_2: model_v2, tokenizer_v2 = load_model('v2') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值