求解TSP经典算法之 Christofides Algorithm

本文介绍了Christofides算法,一种解决旅行商问题(TSP)的有效近似算法。该算法通过构造最小生成树、最小完全匹配等步骤,最终生成近似最优的哈密顿回路,近似比为1.5。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Christofides Algorithm

到目前为止,求解TSP问题的启发式算法可以说是数不胜数,但是能通过理论而不仅仅是实验结果来保证算法求出的最优解与实际最优解之间差距的算法特别少,Christofides提出了一个具有该功能的经典算法,很多学者也在此基础上做了部分改进,个人感觉这个算法将图论的基本知识运用地非常巧妙,值得学习。

本篇文章将从Christofides Algorithm的伪代码入手,结合示意图解释其流程及近似比计算

伪代码

1、构造图的最小生成树T

生成树:包含n-1条边,连接图G中n个点的连通图。

最小生成树:总长度最小的生成树。
在这里插入图片描述

2、O为在最小生成树T上度数为奇数的顶点集,则O中有偶数个顶点

度数:某顶点连接的边数。(奇数度的顶点用蓝色标出)
在这里插入图片描述

为什么说O中有偶数个顶点(即度数为奇数的顶点个数为偶数)?
(1)一条边的两个端点都会算上一个度,即一条

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值