Christofides Algorithm
到目前为止,求解TSP问题的启发式算法可以说是数不胜数,但是能通过理论而不仅仅是实验结果来保证算法求出的最优解与实际最优解之间差距的算法特别少,Christofides提出了一个具有该功能的经典算法,很多学者也在此基础上做了部分改进,个人感觉这个算法将图论的基本知识运用地非常巧妙,值得学习。
本篇文章将从Christofides Algorithm的伪代码入手,结合示意图解释其流程及近似比计算。
伪代码
1、构造图的最小生成树T
生成树:包含n-1条边,连接图G中n个点的连通图。
最小生成树:总长度最小的生成树。
2、O为在最小生成树T上度数为奇数的顶点集,则O中有偶数个顶点
度数:某顶点连接的边数。(奇数度的顶点用蓝色标出)
为什么说O中有偶数个顶点(即度数为奇数的顶点个数为偶数)?
(1)一条边的两个端点都会算上一个度,即一条