【裴礼文数学分析】例1.2.1

题面:

证明\lim_{n \to \infty }\sqrt[n]{n+1}=1

分析:

寻找N使得 n>N时

\left |\sqrt[n]{n+1}-1 \right |<\varepsilon (显然左式>0)

对上式进行变换:

\sqrt[n]{n+1}<\varepsilon +1

进而 n+1<(\varepsilon +1)^{n}

利用二项式定理:

右式>1+\frac{n(n-1)}{2}\varepsilon ^{2}

故只需:1 +\frac{n(n-1)}{2}\varepsilon ^{2}>n+1

(n-1)\varepsilon ^{2}>2

故取N=\left \lfloor \frac{2}{\varepsilon ^{2}} \right \rfloor+1  

n>N时候即有\left |\sqrt[n]{n+1}-1 \right |<\varepsilon

 

\lim_{n \to \infty }b_{n}=b 证明:\lim_{n \to \infty }\frac{\sum b_{i}}{n} =b

简证:

step 1:转化为:已知:\lim_{n \to \infty }a_{n}=0 证明:\lim_{n \to \infty }\frac{\sum a_{i}}{n} =0 (变换可得)

step 2:

\forall \varepsilon >0  \exists N_{1}\in N^{*} 使得

 n>N_{1} 时\left | a_{n} \right |<\frac{\varepsilon }{2}

step 3:

因为N_{1}之前(包括N_{1})的项和为有限数,记为A,故

\forall \varepsilon >0  \exists N_{2}\in N^{*} 使得

 n>N_{2} 时A<\frac{\varepsilon }{2}

\left | \frac{\sum a_{i}}{n} \right |<\frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon

证毕

 

另外,stolz定理能够简单证明②

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值