3.1导数
一.导数定义与可微性的问题
注:在0处用导数的定义来做,得出f(x)再然后一步一步做
注:证明有理点,无理点都不可微
注:一步步算下去就好了
注:导数的定义来做,得出一个矛盾,图形上就看出来是凹凸函数的问题
二.高阶导数与Leibniz公式
a.先拆项再求导
b.直接使用Leibniz公式
c.使用数学归纳法求高阶导数
d.用递推公式求导
e.用Taylor公式求导数
单元练习3.1
注:自己做就直接求导了,结果算错
注:夸克上的另一个更加有普遍性的解法。
注:三角函数求导公式大全
注:只求一个位置的导数时可以用到上面的思路算,而不用硬算!!
3.2 微分中值定理
一.Rolle定理
a.函数零(值)点问题
注:这里不能直接用rolle定理,因为它不是闭区间,要给它创造出一个闭区间
二.Lagrange定理
a.利用几何意义(弦线法)
注:与几何密切相关
b.利用有限增量公式导出新的中值公式
注:构造辅助函数来导出新的中值公式
c.作为函数的变形
注:把lagrange定理看成是taylor公式的0次项展开,它给出了函数与导数的一种关系
三.导数的两大特性
a.导数无第一类间断点
注:判断间断点的类型时,本质上就是求函数在一点的左极限和右极限,然后根据左极限和右极限的具体情况结合上面的分类进行一一对应即可。
b.导数的介值性
注:上面两个特性主要在证明题用
注:导数的介值定理
四.Cauchy中值定理及L‘Hospital法则
a.推导中值公式
b.作为函数与导数的关系
注:证明二阶导数,三阶导数存在什么什么的题,用到
3.3 taylor公式
一.证明中值公式
注:证法二是中规中举的泰勒展开,证法三需要对taylor公式以及积分有非常深的理解
二.用taylor公式证明不等式
注:看得懂,能理解,想的到
三.用taylor做导数的中值估计
注:因为taylor公式中有高阶导数,所以提供了用其作导数估计的可能
四.关于界的估计
注:这道题是用taylor来估计一阶导的范围
五.求无穷远处的极限
注:还有新证法,但是看着都是用语言描述的解法
六.中值点的极限
七.函数方程中的应用
注:taylor公式来证明归零问题
注:也是个归零问题
八.taylor展开的唯一性问题
注:作者的注说的很好地阐述了taylor展开的系数唯一确定问题
九.符号O与o的含义与应用问题
注:符号O和o的区别问题
3.4 不等式与凸函数
a.利用单调性证明不等式
注:要点简单
b.利用微分中值定理证明不等式
注:1)感觉因该放在a.里用的是单调性证明
2)
注:拉格朗日定理在不等式证明中的应用,还有一种解法是用积分来算
3)拉格朗日定理在证明数列不等式中的应用,"不等号"来源于那个的取值范围
4)也算拉格朗日定理在数列不等式中的应用吧
c.利用taylor公式证明不等式
注:这道题的证明意思就是把原式用taylor公式展开后,看每一项都是0,而三次导数的哪一项大于0,那么原式大于0。
d.用求极值的方法证明不等式
e.利用单调极限证明不等式
凸函数
注:一些它的性质与定义,以及用他的特性证明一些问题,比较熟悉先略过。
3.5 导数的综合应用
注:导数在几何,极限,实际问题中的应用等,考试中最没用,实际中最有用的一部分,先略过
例题:
注:三角函数的导数公式大全