【最优化概念总结:目标函数、雅可比矩阵、梯度、海森矩阵、梯度下降、牛顿法、高斯牛顿法、Levenberg-Marquardt法】

文章详细介绍了在优化问题中,目标函数的表达式,包括其平方范数形式。接着讨论了雅可比矩阵、梯度和海森矩阵的概念,这些是优化算法的核心工具。最后,提到了几种迭代算法,如梯度下降、牛顿法、高斯牛顿法以及莱文贝格-马夸特法,它们利用这些矩阵进行参数更新。
摘要由CSDN通过智能技术生成

目标函数

目标函数: L ( x ) = 1 2 ∥ F ( x ) ∥ 2 = 1 2 [ f 1 ( x ) 2 + f 2 ( x ) 2 + . . . + f m ( x ) 2 ] L(x) = \frac{1}{2}\|F(x)\|^2=\frac{1}{2}[f_1(x)^2+f_2(x)^2+...+f_m(x)^2] L(x)=21F(x)2=21[f1(x)2+f2(x)2+...+fm(x)2]
其中, x ∈ R n x \in \R^n xRn n n n维向量, F ( x ) = [ f 1 ( x ) , f 2 ( x ) , . . . , f m ( x ) ] T ∈ R m F(x)=[f_1(x),f_2(x),...,f_m(x)]^T \in \R^m F(x)=[f1(x),f2(x),...,fm(x)]TRm m m m维向量。

雅可比矩阵(Jacobian matrix)

雅各比矩阵: J ( x ) = [ ∂ f 1 ∂ x 1 . . . ∂ f 1 ∂ x n . . . . . . . . . ∂ f m ∂ x 1 . . . ∂ f m ∂ x n ] J(x)=\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & ... & \frac{\partial f_1}{\partial x_n}\\...&...&...\\\frac{\partial f_m}{\partial x_1}&...&\frac{\partial f_m}{\partial x_n} \end{bmatrix} J(x)= x1f1...x1fm.........xnf1...xnfm ,其中 J i j ( x ) = ∂ f i ∂ x j J_{ij}(x) = \frac{\partial f_i}{\partial x_j} Jij(x)=xjfi

梯度

梯度: g ( x ) = ∇ 1 2 ∥ F ( x ) ∥ 2 = J ( x ) T F ( x ) g(x) =\nabla \frac{1}{2}\|F(x)\|^2= J(x)^TF(x) g(x)=21F(x)2=J(x)TF(x)

海森矩阵(Hessian matrix)

海森矩阵: H ( x ) = [ ∂ 2 L ∂ x 1 2 . . . ∂ 2 L ∂ x 1 ∂ x n . . . . . . . . . ∂ 2 L ∂ x 1 ∂ x n . . . ∂ 2 L ∂ x n 2 ] H(x) = \begin{bmatrix} \frac{\partial^2 L}{\partial x_1^2} & ... & \frac{\partial^2 L}{\partial x_1\partial x_n}\\...&...&...\\\frac{\partial^2 L}{\partial x_1\partial x_n}&...&\frac{\partial^2 L}{\partial x_n^2} \end{bmatrix} H(x)= x122L...x1xn2L.........x1xn2L...xn22L ,其中 H i j ( x ) = ∂ 2 L ∂ x i ∂ x j H_{ij}(x)=\frac{\partial^2 L}{\partial x_i \partial x_j} Hij(x)=xixj2L

迭代算法

迭代算法迭代公式 x k + 1 = x k − Δ x k x^{k+1}=x^{k}-\Delta x^{k} xk+1=xkΔxk
梯度下降 Δ x = μ g ( x ) \Delta x=\mu g(x) Δx=μg(x)
牛顿法 Δ x = H − 1 ( x ) g ( x ) \Delta x= H^{-1}(x)g(x) Δx=H1(x)g(x)
高斯牛顿法
Gauss-Newton algorithm
Δ x = [ J ( x ) T J ( x ) ] − 1 g ( x ) \Delta x=[J(x)^TJ(x)]^{-1}g(x) Δx=[J(x)TJ(x)]1g(x)
莱文贝格-马夸特法
Levenberg-Marquardt algorithm
Δ x = [ J ( x ) T J ( x ) + λ I ] − 1 g ( x ) \Delta x= [J(x)^TJ(x)+\lambda I]^{-1}g(x) Δx=[J(x)TJ(x)+λI]1g(x)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值