问题描述
给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。
问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?
思路分析
m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为 j 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法,
(1)j < w[i] ,容量不足,这时候背包容量不足以放下第 i 件物品,只能选择不拿 m[ i ][ j ] = m[ i-1 ][ j ]
(2) j>=w[i] ,这时背包容量可以放下第 i 件物品,如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。
如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 和(1)一样
比较这两种情况那种价值最大。
状态转移方程:
m[i][j] = m[i-1][j] j <= w[i]
m[i][j] = max(m[i-1][j], m[i-1][j-w[i]] + v[i]) j>w[i]
代码
#include <iostream>
#include <cstring>
using namespace std;
const int N=20;
int v[N];//重量
int w[N];//价值
int m[N][N];
int ans[N];
int n,c;
void FindWhat(int i,int j)
{
if(i >= 0)
{
if(m[i][j] == m[i-1][j])
{
ans[i] = 0;
FindWhat(i - 1,j);
}
else if( j - w[i] >= 0 && m[i][j] == m[i - 1][j - w[i]] + v[i] )
{
ans[i] = 1;
FindWhat(i - 1, j - w[i]);
}
}
}
int main()
{
cin >> n >> c;
for(int i = 1; i <= n; i++)
cin>>v[i];
for(int j = 1; j <= n; j++)
cin>>w[j];
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= c;j++)
{
if(j >= w[i])
m[i][j] = max(m[i-1][j], m[i-1][j-w[i]] + v[i]);
else
m[i][j] = m[i - 1][j];
}
}
cout<<m[n][c];
cout<<endl;
FindWhat(n,c);
for(int i = 1; i <= n;i++)
cout<<ans[i];
return 0;
}