0-1背包问题

问题描述
给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。
问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?

思路分析
m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为 j 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法,

(1)j < w[i] ,容量不足,这时候背包容量不足以放下第 i 件物品,只能选择不拿 m[ i ][ j ] = m[ i-1 ][ j ]
(2) j>=w[i] ,这时背包容量可以放下第 i 件物品,如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。
如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 和(1)一样
比较这两种情况那种价值最大。
状态转移方程:
m[i][j] = m[i-1][j] j <= w[i]
m[i][j] = max(m[i-1][j], m[i-1][j-w[i]] + v[i]) j>w[i]

代码

#include <iostream>
#include <cstring>
using namespace std;

const int N=20;

int v[N];//重量 
int w[N];//价值 
int m[N][N];
int ans[N];
int n,c;

void FindWhat(int i,int j)
{
    if(i >= 0)
    {
        if(m[i][j] == m[i-1][j])
        {
            ans[i] = 0;
            FindWhat(i - 1,j);
        }
        else if( j - w[i] >= 0 && m[i][j] == m[i - 1][j - w[i]] + v[i] )
        {
            ans[i] = 1;
            FindWhat(i - 1, j - w[i]);
        }
    }
}

int main()
{
    cin >> n >> c;
	for(int i = 1; i <= n; i++)
	   cin>>v[i];
	for(int j = 1; j <= n; j++)
	   cin>>w[j]; 
 	for(int i = 1; i <= n; i++)
 	{
		for(int j = 1; j <= c;j++)
		{
 			if(j >= w[i])
 				m[i][j] = max(m[i-1][j], m[i-1][j-w[i]] + v[i]);
 			else
				m[i][j] = m[i - 1][j];
		}
	 }
	cout<<m[n][c];

	cout<<endl; 
	FindWhat(n,c);
	for(int i = 1; i <= n;i++)
        cout<<ans[i];
 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值