机器学习
巴涅波赫夫
这个作者很懒,什么都没留下…
展开
-
一文看懂提升树与梯度提升树(GBDT)
之前讲到的 AdaBoost 是提升方法中最典型的算法思路之一,提升方法则采用加法模型(基函数的线性组合)与前向分步算法,而 AdaBoost 只是将损失函数指定为指数损失函数的提升方法而已。提升树是以分类树或回归树为基本分类器的提升方法。其被认为是统计学习中性能最好的方法之一。实际上,AdaBoost 更多的是一种算法思路,其并没有指定基函数是决策树还是其他。对于分类问题,提升树的基决策树是二叉分类树;对于回归问题,提升树的基决策树是二叉回归树。原创 2023-01-29 16:09:13 · 730 阅读 · 0 评论 -
常见损失函数综述及区别
损失函数和风险函数首先引入损失函数与风险函数的概念。损失函数度量模型一次预测的好坏,风险函数度量平均意义下模型预测的好坏。监督学习问题是在假设空间F\Bbb FF中选取模型fff作为决策函数,对于给定的输入XXX,有f(X)f(X)f(X)给出相应的输出YYY,这个输出的预测值f(X)f(X)f(X)与真实值YYY可能一致也可能不一致,用一个损失函数(loss function)或代价函数(cost function)来度量预测错误的程度。损失函数是f(X)f(X)f(X)和YYY的非负实值函数,记作L原创 2022-03-23 17:08:12 · 4314 阅读 · 1 评论 -
感知机手写推导
原创 2022-03-18 19:50:32 · 127 阅读 · 0 评论 -
XGBoost算法的手写推导
原创 2022-03-07 00:04:25 · 767 阅读 · 0 评论 -
手推梯度提升树GBDT
原创 2022-03-07 00:03:38 · 181 阅读 · 1 评论 -
手推提升算法之AdaBoost
原创 2022-03-07 00:02:15 · 164 阅读 · 0 评论 -
手推支持向量机
原创 2022-03-07 00:00:55 · 233 阅读 · 0 评论 -
手推决策树之CART算法
原创 2022-03-06 21:46:33 · 423 阅读 · 0 评论 -
手推决策树之ID3与C4.5算法
原创 2022-03-06 21:43:45 · 497 阅读 · 0 评论 -
手推机器学习算法之朴素贝叶斯
原创 2022-03-06 21:22:52 · 404 阅读 · 0 评论