Java 实现 YoloV7 人体姿态识别

1 OpenCV 环境的准备

这个项目中需要用到 opencv 进行图片的读取与处理操作,因此我们需要先配置一下 opencv 在 java 中运行的配置。

首先前往 opencv 官网下载 opencv-4.6 :点此下载 (也可在下文ONNX文件连接中下载);下载好后仅选择路径后即可完成安装。

此时将 opencv\build\java\x64 路径下的 opencv_java460.dll 复制到 C:\Windows\System32 中,再将 D:\Tools\opencv\opencv\build\java 下的 opencv-460.jar 放到我们 Springboot 项目 resources 文件夹下的 lib 文件夹下。

本文所需 ONNX 文件请 点此下载

JAVA使用YOLOV7进行 目标检测 请转至 Java使用OnnxRuntime及OpenCV实现YoloV7目标检测
项目代码可前往 项目主页 查看。

2 Maven 配置

引入 onnxruntime 和 opencv 这两个依赖即可。值得注意的是,引 opencv 时systemPath记得与上文说的opencv-460.jar所在路径保持一致。

<dependency>
    <groupId>com.microsoft.onnxruntime</groupId>
    <artifactId>onnxruntime</artifactId>
    <version>1.12.1</version>
</dependency>

<dependency>
    <groupId>org.opencv</groupId>
    <artifactId>opencv</artifactId>
    <version>4.6.0</version>
    <scope>system</scope>
    <systemPath>${project.basedir}/src/main/resources/lib/opencv-460.jar</systemPath>
</dependency>

3 Config

3.1 PEPlotConfig.java

在此配置一些画图时用到的超参数

package cn.halashuo.config;

import org.opencv.core.Scalar;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public final class PEPlotConfig {

    public static final List<Scalar> palette= new ArrayList<>(Arrays.asList(
            new Scalar( 255, 128, 0 ),
            new Scalar( 255, 153, 51 ),
            new Scalar( 255, 178, 102 ),
            new Scalar( 230, 230, 0 ),
            new Scalar( 255, 153, 255 ),
            new Scalar( 153, 204, 255 ),
            new Scalar( 255, 102, 255 ),
            new Scalar( 255, 51, 255 ),
            new Scalar( 102, 178, 255 ),
            new Scalar( 51, 153, 255 ),
            new Scalar( 255, 153, 153 ),
            new Scalar( 255, 102, 102 ),
            new Scalar( 255, 51, 51 ),
            new Scalar( 153, 255, 153 ),
            new Scalar( 102, 255, 102 ),
            new Scalar( 51, 255, 51 ),
            new Scalar( 0, 255, 0 ),
            new Scalar( 0, 0, 255 ),
            new Scalar( 255, 0, 0 ),
            new Scalar( 255, 255, 255 )
    ));

    public static final int[][] skeleton = {
            {16, 14}, {14, 12}, {17, 15}, {15, 13}, {12, 13}, {6, 12},
            {7, 13}, {6, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 11}, {2, 3},
            {1, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}
    };

    public static final List<Scalar> poseLimbColor = new ArrayList<>(Arrays.asList(
            palette.get(9), palette.get(9), palette.get(9), palette.get(9), palette.get(7),
            palette.get(7), palette.get(7), palette.get(0), palette.get(0), palette.get(0),
            palette.get(0), palette.get(0), palette.get(16), palette.get(16), palette.get(16),
            palette.get(16), palette.get(16), palette.get(16), palette.get(16)));

    public static final List<Scalar> poseKptColor = new ArrayList<>(Arrays.asList(
            palette.get(16), palette.get(16), palette.get(16), palette.get(16), palette.get(16),
            palette.get(0), palette.get(0), palette.get(0), palette.get(0), palette.get(0),
            palette.get(0), palette.get(9), palette.get(9), palette.get(9), palette.get(9),
            palette.get(9), palette.get(9)));

}

4 Utils

3.1 Letterbox.java

这个类负责调整图像大小和填充图像,使满足步长约束,并记录参数。

package cn.halashuo.utils;

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;

public class Letterbox {

    private final Size newShape = new Size(1280, 1280);
    private final double[] color = new double[]{114,114,114};
    private final Boolean auto = false;
    private final Boolean scaleUp = true;
    private final Integer stride = 32;

    private double ratio;
    private double dw;
    private double dh;

    public double getRatio() {
        return ratio;
    }

    public double getDw() {
        return dw;
    }

    public Integer getWidth() {
        return (int) this.newShape.width;
    }

    public Integer getHeight() {
        return (int) this.newShape.height;
    }

    public double getDh() {
        return dh;
    }

    public Mat letterbox(Mat im) { // 调整图像大小和填充图像,使满足步长约束,并记录参数

        int[] shape = {im.rows(), im.cols()}; // 当前形状 [height, width]
        // Scale ratio (new / old)
        double r = Math.min(this.newShape.height / shape[0], this.newShape.width / shape[1]);
        if (!this.scaleUp) { // 仅缩小,不扩大(一起为了mAP)
            r = Math.min(r, 1.0);
        }
        // Compute padding
        Size newUnpad = new Size(Math.round(shape[1] * r), Math.round(shape[0] * r));
        double dw = this.newShape.width - newUnpad.width, dh = this.newShape.height - newUnpad.height; // wh 填充
        if (this.auto) { // 最小矩形
            dw = dw % this.stride;
            dh = dh % this.stride;
        }
        dw /= 2; // 填充的时候两边都填充一半,使图像居于中心
        dh /= 2;
        if (shape[1] != newUnpad.width || shape[0] != newUnpad.height) { // resize
            Imgproc.resize(im, im, newUnpad, 0, 0, Imgproc.INTER_LINEAR);
        }
        int top = (int) Math.round(dh - 0.1), bottom = (int) Math.round(dh + 0.1);
        int left = (int) Math.round(dw - 0.1), right = (int) Math.round(dw + 0.1);
        // 将图像填充为正方形
        Core.copyMakeBorder(im, im, top, bottom, left, right, Core.BORDER_CONSTANT, new org.opencv.core.Scalar(this.color));
        this.ratio = r;
        this.dh = dh;
        this.dw = dw;
        return im;
    }
}

3.2 NMS.java

这个类负责进行非极大值抑制,以筛选检测到的人。

package cn.halashuo.utils;

import cn.halashuo.domain.PEResult;

import java.util.ArrayList;
import java.util.List;

public class NMS {

    public static List<PEResult> nms(List<PEResult> boxes, float iouThreshold) {
        // 根据score从大到小对List进行排序
        boxes.sort((b1, b2) -> Float.compare(b2.getScore(), b1.getScore()));
        List<PEResult> resultList = new ArrayList<>();
        for (int i = 0; i < boxes.size(); i++) {
            PEResult box = boxes.get(i);
            boolean keep = true;
            // 从i+1开始,遍历之后的所有boxes,移除与box的IOU大于阈值的元素
            for (int j = i + 1; j < boxes.size(); j++) {
                PEResult otherBox = boxes.get(j);
                float iou = getIntersectionOverUnion(box, otherBox);
                if (iou > iouThreshold) {
                    keep = false;
                    break;
                }
            }
            if (keep) {
                resultList.add(box);
            }
        }
        return resultList;
    }
    private static float getIntersectionOverUnion(PEResult box1, PEResult box2) {
        float x1 = Math.max(box1.getX0(), box2.getX0());
        float y1 = Math.max(box1.getY0(), box2.getY0());
        float x2 = Math.min(box1.getX1(), box2.getX1());
        float y2 = Math.min(box1.getY1(), box2.getY1());
        float intersectionArea = Math.max(0, x2 - x1) * Math.max(0, y2 - y1);
        float box1Area = (box1.getX1() - box1.getX0()) * (box1.getY1() - box1.getY0());
        float box2Area = (box2.getX1() - box2.getX0()) * (box2.getY1() - box2.getY0());
        float unionArea = box1Area + box2Area - intersectionArea;
        return intersectionArea / unionArea;
    }
}

5 domain

5.1 KeyPoint.java

记录关键点信息的实体类。

package cn.halashuo.domain;

public class KeyPoint {
    private Integer id;
    private Float x;
    private Float y;
    private Float score;

    public KeyPoint(Integer id, Float x, Float y, Float score) {
        this.id = id;
        this.x = x;
        this.y = y;
        this.score = score;
    }

    public Integer getId() {
        return id;
    }

    public Float getX() {
        return x;
    }

    public Float getY() {
        return y;
    }

    public Float getScore() {
        return score;
    }

    @Override
    public String toString() {
        return "    第 " + (id+1) + " 个关键点: " +
                " x=" + x +
                " y=" + y +
                " c=" + score +
                "\n";
    }
}

5.2 PEResult.java

记录所有人物检测信息的实体类。

package cn.halashuo.domain;

import java.util.ArrayList;
import java.util.List;

public class PEResult {

    private Float x0;
    private Float y0;
    private Float x1;
    private Float y1;
    private Float score;
    private Integer clsId;
    private List<KeyPoint> keyPointList;

    public PEResult(float[] peResult) {
        float x = peResult[0];
        float y = peResult[1];
        float w = peResult[2]/2.0f;
        float h = peResult[3]/2.0f;
        this.x0 = x-w;
        this.y0 = y-h;
        this.x1 = x+w;
        this.y1 = y+h;
        this.score = peResult[4];
        this.clsId = (int) peResult[5];
        this.keyPointList = new ArrayList<>();
        int keyPointNum = (peResult.length-6)/3;
        for (int i=0;i<keyPointNum;i++) {
            this.keyPointList.add(new KeyPoint(i, peResult[6+3*i], peResult[6+3*i+1], peResult[6+3*i+2]));
        }
    }

    public Float getX0() {
        return x0;
    }

    public Float getY0() {
        return y0;
    }

    public Float getX1() {
        return x1;
    }

    public Float getY1() {
        return y1;
    }

    public Float getScore() {
        return score;
    }

    public Integer getClsId() {
        return clsId;
    }

    public List<KeyPoint> getKeyPointList() {
        return keyPointList;
    }

    @Override
    public String toString() {
        String result = "PEResult:" +
                "  x0=" + x0 +
                ", y0=" + y0 +
                ", x1=" + x1 +
                ", y1=" + y1 +
                ", score=" + score +
                ", clsId=" + clsId +
                "\n";
        for (KeyPoint x : keyPointList) {
            result = result + x.toString();
        }
        return result;
    }
}


6 PoseEstimation.java

设置好 ONNX 文件路径及需要识别的图片路径即可。如有需要也可设置 CUDA 作为运行环境,大幅提升 FPS。

package cn.halashuo;

import ai.onnxruntime.OnnxTensor;
import ai.onnxruntime.OrtEnvironment;
import ai.onnxruntime.OrtException;
import ai.onnxruntime.OrtSession;
import cn.halashuo.domain.KeyPoint;
import cn.halashuo.domain.PEResult;
import cn.halashuo.utils.Letterbox;
import cn.halashuo.utils.NMS;
import cn.halashuo.config.PEPlotConfig;
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;

import java.nio.FloatBuffer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

public class PoseEstimation {
    static
    {
        //在使用OpenCV前必须加载Core.NATIVE_LIBRARY_NAME类,否则会报错
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    }

    public static void main(String[] args) throws OrtException {

        // 加载ONNX模型
        OrtEnvironment environment = OrtEnvironment.getEnvironment();
        OrtSession.SessionOptions sessionOptions = new OrtSession.SessionOptions();
        OrtSession session = environment.createSession("src\\main\\resources\\model\\yolov7-w6-pose.onnx", sessionOptions);
        // 输出基本信息
        session.getInputInfo().keySet().forEach(x -> {
            try {
                System.out.println("input name = " + x);
                System.out.println(session.getInputInfo().get(x).getInfo().toString());
            } catch (OrtException e) {
                throw new RuntimeException(e);
            }
        });

        // 读取 image
        Mat img = Imgcodecs.imread("src\\main\\resources\\image\\bus.jpg");
        Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);
        Mat image = img.clone();

        // 在这里先定义下线的粗细、关键的半径(按比例设置大小粗细比较好一些)
        int minDwDh = Math.min(img.width(), img.height());
        int thickness = minDwDh / 333;
        int radius = minDwDh / 168;

        // 更改 image 尺寸
        Letterbox letterbox = new Letterbox();
        letterbox.setNewShape(new Size(960, 960));
        letterbox.setStride(64);
        image = letterbox.letterbox(image);
        double ratio = letterbox.getRatio();
        double dw = letterbox.getDw();
        double dh = letterbox.getDh();
        int rows = letterbox.getHeight();
        int cols = letterbox.getWidth();
        int channels = image.channels();

        // 将Mat对象的像素值赋值给Float[]对象
        float[] pixels = new float[channels * rows * cols];
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                double[] pixel = image.get(j, i);
                for (int k = 0; k < channels; k++) {
                    // 这样设置相当于同时做了image.transpose((2, 0, 1))操作
                    pixels[rows * cols * k + j * cols + i] = (float) pixel[k] / 255.0f;
                }
            }
        }

        // 创建OnnxTensor对象
        long[] shape = {1L, (long) channels, (long) rows, (long) cols};
        OnnxTensor tensor = OnnxTensor.createTensor(environment, FloatBuffer.wrap(pixels), shape);
        HashMap<String, OnnxTensor> stringOnnxTensorHashMap = new HashMap<>();
        stringOnnxTensorHashMap.put(session.getInputInfo().keySet().iterator().next(), tensor);

        // 运行模型
        OrtSession.Result output = session.run(stringOnnxTensorHashMap);

        // 得到结果
        float[][] outputData = ((float[][][]) output.get(0).getValue())[0];

        List<PEResult> peResults = new ArrayList<>();
        for (int i=0;i<outputData.length;i++){
            PEResult result = new PEResult(outputData[i]);
            if (result.getScore()>0.25f) {
                peResults.add(result);
            }
        }

        // 对结果进行非极大值抑制
        peResults = NMS.nms(peResults, 0.65f);

        for (PEResult peResult: peResults) {
            System.out.println(peResult);
            // 画框
            Point topLeft = new Point((peResult.getX0()-dw)/ratio, (peResult.getY0()-dh)/ratio);
            Point bottomRight = new Point((peResult.getX1()-dw)/ratio, (peResult.getY1()-dh)/ratio);
            Imgproc.rectangle(img, topLeft, bottomRight, new Scalar(255,0,0), thickness);
            List<KeyPoint> keyPoints = peResult.getKeyPointList();
            // 画点
            keyPoints.forEach(keyPoint->{
                if (keyPoint.getScore()>0.50f) {
                    Point center = new Point((keyPoint.getX()-dw)/ratio, (keyPoint.getY()-dh)/ratio);
                    Scalar color = PEPlotConfig.poseKptColor.get(keyPoint.getId());
                    Imgproc.circle(img, center, radius, color, -1); //-1表示实心
                }
            });
            // 画线
            for (int i=0;i<PEPlotConfig.skeleton.length;i++){
                int indexPoint1 = PEPlotConfig.skeleton[i][0]-1;
                int indexPoint2 = PEPlotConfig.skeleton[i][1]-1;
                if ( keyPoints.get(indexPoint1).getScore()>0.5f && keyPoints.get(indexPoint2).getScore()>0.5f ) {
                    Scalar coler = PEPlotConfig.poseLimbColor.get(i);
                    Point point1 = new Point(
                            (keyPoints.get(indexPoint1).getX()-dw)/ratio,
                            (keyPoints.get(indexPoint1).getY()-dh)/ratio
                    );
                    Point point2 = new Point(
                            (keyPoints.get(indexPoint2).getX()-dw)/ratio,
                            (keyPoints.get(indexPoint2).getY()-dh)/ratio
                    );
                    Imgproc.line(img, point1, point2, coler, thickness);
                }
            }
        }
        Imgproc.cvtColor(img, img, Imgproc.COLOR_RGB2BGR);
        // 保存图像
        // Imgcodecs.imwrite("image.jpg", img);
        HighGui.imshow("Display Image", img);
        // 等待按下任意键继续执行程序
        HighGui.waitKey();

    }
}

运行结果:

input name = images
TensorInfo(javaType=FLOAT,onnxType=ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT,shape=[1, 3, 960, 960])
PEResult:  x0=164.1142, y0=357.69672, x1=341.0573, y1=800.42975, score=0.7534131, clsId=0
    第 1 个关键点:  x=246.95715 y=397.0772 c=0.9736327
    第 2 个关键点:  x=252.17633 y=389.2904 c=0.8335564
    第 3 个关键点:  x=238.11848 y=389.0014 c=0.96936846
    第 4 个关键点:  x=256.3179 y=395.70413 c=0.26490688
    第 5 个关键点:  x=217.58188 y=395.21817 c=0.9350542
    第 6 个关键点:  x=261.88034 y=443.02286 c=0.9898272
    第 7 个关键点:  x=197.16116 y=444.8831 c=0.9871879
    第 8 个关键点:  x=288.0304 y=506.67032 c=0.96026266
    第 9 个关键点:  x=232.06883 y=506.9636 c=0.97538215
    第 10 个关键点:  x=239.84201 y=521.9722 c=0.9516981
    第 11 个关键点:  x=277.70163 y=489.83765 c=0.970703
    第 12 个关键点:  x=257.0904 y=574.55255 c=0.9929459
    第 13 个关键点:  x=208.6877 y=576.3064 c=0.9918982
    第 14 个关键点:  x=271.411 y=667.6743 c=0.98325074
    第 15 个关键点:  x=203.27112 y=671.0604 c=0.98317075
    第 16 个关键点:  x=285.6367 y=760.895 c=0.91636044
    第 17 个关键点:  x=184.19543 y=757.7814 c=0.91179585

PEResult:  x0=316.40674, y0=360.82706, x1=426.57, y1=759.98706, score=0.2713838, clsId=0
    第 1 个关键点:  x=381.07776 y=401.219 c=0.97289705
    第 2 个关键点:  x=386.32465 y=393.87543 c=0.8813406
    第 3 个关键点:  x=372.7825 y=394.40253 c=0.9677005
    第 4 个关键点:  x=392.475 y=397.61212 c=0.38852227
    第 5 个关键点:  x=358.659 y=399.40833 c=0.90877795
    第 6 个关键点:  x=402.89664 y=442.8764 c=0.9850693
    第 7 个关键点:  x=344.9049 y=448.23697 c=0.98851293
    第 8 个关键点:  x=414.33658 y=491.29187 c=0.932391
    第 9 个关键点:  x=342.81982 y=514.2552 c=0.97218585
    第 10 个关键点:  x=372.42307 y=471.12778 c=0.9217508
    第 11 个关键点:  x=355.56168 y=568.59796 c=0.9616347
    第 12 个关键点:  x=395.88492 y=558.541 c=0.98994935
    第 13 个关键点:  x=356.53287 y=560.3552 c=0.99083
    第 14 个关键点:  x=402.41013 y=636.82916 c=0.97681665
    第 15 个关键点:  x=356.1795 y=645.22626 c=0.9832493
    第 16 个关键点:  x=363.65356 y=694.9054 c=0.92282534
    第 17 个关键点:  x=358.54623 y=727.66455 c=0.93670356

PEResult:  x0=120.30354, y0=488.97424, x1=189.55516, y1=765.24194, score=0.2625065, clsId=0
    第 1 个关键点:  x=128.37527 y=496.36432 c=0.039970636
    第 2 个关键点:  x=129.2826 y=488.29858 c=0.01759991
    第 3 个关键点:  x=129.88588 y=487.7059 c=0.023388624
    第 4 个关键点:  x=128.1956 y=486.87085 c=0.022539705
    第 5 个关键点:  x=129.61555 y=486.93362 c=0.026325405
    第 6 个关键点:  x=124.60656 y=506.1516 c=0.11605239
    第 7 个关键点:  x=124.11076 y=506.29758 c=0.1002911
    第 8 个关键点:  x=129.53989 y=577.0432 c=0.39045402
    第 9 个关键点:  x=129.05757 y=578.36163 c=0.4030531
    第 10 个关键点:  x=161.94182 y=651.2286 c=0.51389414
    第 11 个关键点:  x=162.66849 y=654.58966 c=0.54413426
    第 12 个关键点:  x=128.37022 y=633.2864 c=0.12599188
    第 13 个关键点:  x=128.395 y=635.9184 c=0.110325515
    第 14 个关键点:  x=128.9154 y=668.3744 c=0.098092705
    第 15 个关键点:  x=129.4807 y=669.07947 c=0.08956778
    第 16 个关键点:  x=128.86487 y=750.24927 c=0.09377599
    第 17 个关键点:  x=127.63382 y=751.3636 c=0.086484134

PEResult:  x0=710.87134, y0=352.32605, x1=839.29944, y1=781.6887, score=0.2580245, clsId=0
    第 1 个关键点:  x=815.21063 y=390.9094 c=0.37949353
    第 2 个关键点:  x=819.77454 y=382.87204 c=0.34996593
    第 3 个关键点:  x=816.6579 y=382.68045 c=0.0947094
    第 4 个关键点:  x=831.6544 y=386.69308 c=0.3775956
    第 5 个关键点:  x=830.4774 y=386.01678 c=0.044245332
    第 6 个关键点:  x=828.6047 y=435.97873 c=0.62260723
    第 7 个关键点:  x=838.1829 y=433.01996 c=0.32877648
    第 8 个关键点:  x=817.08154 y=511.3317 c=0.7232578
    第 9 个关键点:  x=824.0419 y=505.8941 c=0.21007198
    第 10 个关键点:  x=773.95953 y=496.15784 c=0.80840695
    第 11 个关键点:  x=790.11487 y=490.05597 c=0.33966026
    第 12 个关键点:  x=826.98004 y=571.4592 c=0.6694445
    第 13 个关键点:  x=830.14514 y=567.2725 c=0.508251
    第 14 个关键点:  x=796.26184 y=655.2373 c=0.81898046
    第 15 个关键点:  x=802.0529 y=650.5082 c=0.6584172
    第 16 个关键点:  x=762.1977 y=747.01917 c=0.6550461
    第 17 个关键点:  x=763.58057 y=741.5452 c=0.5072014


使用 yolov7-w6-pose 的官方模型训练并转化成 onnx 后,得到的结果维度为 n × 57 n\times 57 n×57。其中,前六个元素分别是 x、y、w、h、score、classId。关键点信息由x、y、score三个元素构成,共有17个关键点,因此每个人体监测信息共计 3 × 17 + 6 = 57 3\times 17 + 6 = 57 3×17+6=57 个元素。

<think>好的,我需要帮助用户创建一个思维导图,展示如何使用YOLOv5实现游客识别、结合OpenPose进行行为检测,并最终部署到OPENMV4的流程。首先,我需要理清每个步骤的关键点,并将它们组织成一个逻辑清晰的框架。 首先,用户提到了YOLOv5用于游客识别YOLOv5是一个常用的目标检测模型,所以第一步应该是数据准备和处理,包括收集游客图像数据集、标注数据(比如使用LabelImg工具),以及数据增强方法如随机裁剪、旋转等。这部分需要确保数据质量和多样性,以提高模型泛化能力。 接下来是模型训练部分。需要安装YOLOv5的依赖环境,比如PyTorch和其他必要的库。然后配置训练参数,比如学习率、批次大小等。之后进行模型训练,并验证模型性能,比如使用mAP(平均精度)等指标评估。训练完成后,可能需要导出模型为ONNX或TensorRT格式以便后续部署。 然后是OpenPose进行行为检测。OpenPose主要用于人体姿态估计,所以这里需要处理视频或图像序列,提取人体关键点。同样需要数据准备,可能包括行为数据集,比如站立、奔跑等动作的标注。然后配置OpenPose模型,进行关键点检测,再基于这些关键点设计行为识别算法,比如使用规则判断或机器学习模型分类。 接下来是部署到OPENMV4。OPENMV4是一个嵌入式设备,资源有限,所以需要考虑模型轻量化。可能需要将YOLOv5和OpenPose模型进行量化或剪枝,减少计算量和内存占用。然后进行环境配置,比如安装OpenMV IDE和相关库。编写部署脚本,处理摄像头输入,调用模型进行推理,并输出结果。最后进行性能优化,比如调整帧率、分辨率,确保实时性。 整个流程需要整合YOLOv5和OpenPose的输出,可能需要在嵌入式设备上协调两个模型的运行,比如先检测游客,再对其行为进行分析。此外,可能需要考虑硬件限制,如内存、处理速度,选择合适的模型压缩技术。 用户提供的引用中,引用[3]提到大模型生成思维导图的方法,可以通过生成Mermaid代码来展示图表。因此,在生成思维导图时,可以按照模块划分,将每个步骤分解为子模块,并标明各步骤的关键点和注意事项。同时,引用[4]中的Java学习路线思维导图可以作为结构参考,确保层次清晰。 需要验证各部分之间的衔接是否合理,比如数据准备是否满足两个模型的需求,部署步骤是否考虑到硬件限制。另外,需要确保每个技术点的正确性,比如YOLOv5的导出格式是否兼容OPENMV4,OpenPose在嵌入式设备上的运行效率等。 最后,生成相关问题时要围绕用户的主要技术点,比如性能优化、模型集成、部署挑战等,帮助用户深入理解每个环节的可能问题。</think>### 使用YOLOv5与OpenPose实现游客行为检测及OPENMV4部署流程 以下是基于YOLOv5、OpenPose和OPENMV4的**游客行为检测系统**实现流程的思维导图框架(以Mermaid代码形式呈现),您可将其导入支持Mermaid的工具(如Typora、VSCode插件)生成可视化导图: ````markdown ```mermaid graph TD A[整体流程] --> B(YOLOv5游客识别) A --> C(OpenPose行为检测) A --> D(OPENMV4部署) B --> B1[数据准备] B1 --> B11(游客图像数据集) B1 --> B12(标注工具:LabelImg) B1 --> B13(数据增强:旋转/裁剪) B --> B2[模型训练] B2 --> B21(安装YOLOv5依赖) B2 --> B22(配置训练参数) B2 --> B23(模型验证:mAP指标) B --> B3[模型导出] B3 --> B31(ONNX/TensorRT格式) C --> C1[数据处理] C1 --> C11(视频/图像序列输入) C1 --> C12(行为数据集标注) C --> C2[关键点检测] C2 --> C21(OpenPose模型配置) C2 --> C22(人体骨骼关键点提取) C --> C3[行为识别] C3 --> C31(动作分类算法设计) C3 --> C32(规则判断/机器学习分类) D --> D1[模型轻量化] D1 --> D11(模型量化/剪枝) D1 --> D12(计算图优化) D --> D2[环境配置] D2 --> D21(安装OpenMV IDE) D2 --> D22(部署依赖库) D --> D3[集成部署] D3 --> D31(摄像头输入处理) D3 --> D32(推理结果可视化) D3 --> D33(性能优化:帧率/分辨率调整) ``` ```` ### 关键点说明 1. **YOLOv5游客识别** - 需针对游客场景优化数据集,如增加遮挡、多尺度样本[^3] - 部署前需将PyTorch模型转换为OPENMV4兼容格式(如TensorFlow Lite) 2. **OpenPose行为检测** - 行为分类可结合关键点时空关系(如关节角度变化率)设计规则[^4] - 资源受限时可采用轻量级姿态估计模型(如MobilePose) 3. **OPENMV4部署** - 需使用`micropython`编写硬件控制逻辑,限制单帧处理时间[^1] - 可通过`Cpolar`实现远程监控数据回传[^1] ###
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值