Java 实现 YoloV7 人体姿态识别

1 OpenCV 环境的准备

这个项目中需要用到 opencv 进行图片的读取与处理操作,因此我们需要先配置一下 opencv 在 java 中运行的配置。

首先前往 opencv 官网下载 opencv-4.6 :点此下载 (也可在下文ONNX文件连接中下载);下载好后仅选择路径后即可完成安装。

此时将 opencv\build\java\x64 路径下的 opencv_java460.dll 复制到 C:\Windows\System32 中,再将 D:\Tools\opencv\opencv\build\java 下的 opencv-460.jar 放到我们 Springboot 项目 resources 文件夹下的 lib 文件夹下。

本文所需 ONNX 文件请 点此下载

JAVA使用YOLOV7进行 目标检测 请转至 Java使用OnnxRuntime及OpenCV实现YoloV7目标检测
项目代码可前往 项目主页 查看。

2 Maven 配置

引入 onnxruntime 和 opencv 这两个依赖即可。值得注意的是,引 opencv 时systemPath记得与上文说的opencv-460.jar所在路径保持一致。

<dependency>
    <groupId>com.microsoft.onnxruntime</groupId>
    <artifactId>onnxruntime</artifactId>
    <version>1.12.1</version>
</dependency>

<dependency>
    <groupId>org.opencv</groupId>
    <artifactId>opencv</artifactId>
    <version>4.6.0</version>
    <scope>system</scope>
    <systemPath>${project.basedir}/src/main/resources/lib/opencv-460.jar</systemPath>
</dependency>

3 Config

3.1 PEPlotConfig.java

在此配置一些画图时用到的超参数

package cn.halashuo.config;

import org.opencv.core.Scalar;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public final class PEPlotConfig {

    public static final List<Scalar> palette= new ArrayList<>(Arrays.asList(
            new Scalar( 255, 128, 0 ),
            new Scalar( 255, 153, 51 ),
            new Scalar( 255, 178, 102 ),
            new Scalar( 230, 230, 0 ),
            new Scalar( 255, 153, 255 ),
            new Scalar( 153, 204, 255 ),
            new Scalar( 255, 102, 255 ),
            new Scalar( 255, 51, 255 ),
            new Scalar( 102, 178, 255 ),
            new Scalar( 51, 153, 255 ),
            new Scalar( 255, 153, 153 ),
            new Scalar( 255, 102, 102 ),
            new Scalar( 255, 51, 51 ),
            new Scalar( 153, 255, 153 ),
            new Scalar( 102, 255, 102 ),
            new Scalar( 51, 255, 51 ),
            new Scalar( 0, 255, 0 ),
            new Scalar( 0, 0, 255 ),
            new Scalar( 255, 0, 0 ),
            new Scalar( 255, 255, 255 )
    ));

    public static final int[][] skeleton = {
            {16, 14}, {14, 12}, {17, 15}, {15, 13}, {12, 13}, {6, 12},
            {7, 13}, {6, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 11}, {2, 3},
            {1, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}
    };

    public static final List<Scalar> poseLimbColor = new ArrayList<>(Arrays.asList(
            palette.get(9), palette.get(9), palette.get(9), palette.get(9), palette.get(7),
            palette.get(7), palette.get(7), palette.get(0), palette.get(0), palette.get(0),
            palette.get(0), palette.get(0), palette.get(16), palette.get(16), palette.get(16),
            palette.get(16), palette.get(16), palette.get(16), palette.get(16)));

    public static final List<Scalar> poseKptColor = new ArrayList<>(Arrays.asList(
            palette.get(16), palette.get(16), palette.get(16), palette.get(16), palette.get(16),
            palette.get(0), palette.get(0), palette.get(0), palette.get(0), palette.get(0),
            palette.get(0), palette.get(9), palette.get(9), palette.get(9), palette.get(9),
            palette.get(9), palette.get(9)));

}

4 Utils

3.1 Letterbox.java

这个类负责调整图像大小和填充图像,使满足步长约束,并记录参数。

package cn.halashuo.utils;

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;

public class Letterbox {

    private final Size newShape = new Size(1280, 1280);
    private final double[] color = new double[]{114,114,114};
    private final Boolean auto = false;
    private final Boolean scaleUp = true;
    private final Integer stride = 32;

    private double ratio;
    private double dw;
    private double dh;

    public double getRatio() {
        return ratio;
    }

    public double getDw() {
        return dw;
    }

    public Integer getWidth() {
        return (int) this.newShape.width;
    }

    public Integer getHeight() {
        return (int) this.newShape.height;
    }

    public double getDh() {
        return dh;
    }

    public Mat letterbox(Mat im) { // 调整图像大小和填充图像,使满足步长约束,并记录参数

        int[] shape = {im.rows(), im.cols()}; // 当前形状 [height, width]
        // Scale ratio (new / old)
        double r = Math.min(this.newShape.height / shape[0], this.newShape.width / shape[1]);
        if (!this.scaleUp) { // 仅缩小,不扩大(一起为了mAP)
            r = Math.min(r, 1.0);
        }
        // Compute padding
        Size newUnpad = new Size(Math.round(shape[1] * r), Math.round(shape[0] * r));
        double dw = this.newShape.width - newUnpad.width, dh = this.newShape.height - newUnpad.height; // wh 填充
        if (this.auto) { // 最小矩形
            dw = dw % this.stride;
            dh = dh % this.stride;
        }
        dw /= 2; // 填充的时候两边都填充一半,使图像居于中心
        dh /= 2;
        if (shape[1] != newUnpad.width || shape[0] != newUnpad.height) { // resize
            Imgproc.resize(im, im, newUnpad, 0, 0, Imgproc.INTER_LINEAR);
        }
        int top = (int) Math.round(dh - 0.1), bottom = (int) Math.round(dh + 0.1);
        int left = (int) Math.round(dw - 0.1), right = (int) Math.round(dw + 0.1);
        // 将图像填充为正方形
        Core.copyMakeBorder(im, im, top, bottom, left, right, Core.BORDER_CONSTANT, new org.opencv.core.Scalar(this.color));
        this.ratio = r;
        this.dh = dh;
        this.dw = dw;
        return im;
    }
}

3.2 NMS.java

这个类负责进行非极大值抑制,以筛选检测到的人。

package cn.halashuo.utils;

import cn.halashuo.domain.PEResult;

import java.util.ArrayList;
import java.util.List;

public class NMS {

    public static List<PEResult> nms(List<PEResult> boxes, float iouThreshold) {
        // 根据score从大到小对List进行排序
        boxes.sort((b1, b2) -> Float.compare(b2.getScore(), b1.getScore()));
        List<PEResult> resultList = new ArrayList<>();
        for (int i = 0; i < boxes.size(); i++) {
            PEResult box = boxes.get(i);
            boolean keep = true;
            // 从i+1开始,遍历之后的所有boxes,移除与box的IOU大于阈值的元素
            for (int j = i + 1; j < boxes.size(); j++) {
                PEResult otherBox = boxes.get(j);
                float iou = getIntersectionOverUnion(box, otherBox);
                if (iou > iouThreshold) {
                    keep = false;
                    break;
                }
            }
            if (keep) {
                resultList.add(box);
            }
        }
        return resultList;
    }
    private static float getIntersectionOverUnion(PEResult box1, PEResult box2) {
        float x1 = Math.max(box1.getX0(), box2.getX0());
        float y1 = Math.max(box1.getY0(), box2.getY0());
        float x2 = Math.min(box1.getX1(), box2.getX1());
        float y2 = Math.min(box1.getY1(), box2.getY1());
        float intersectionArea = Math.max(0, x2 - x1) * Math.max(0, y2 - y1);
        float box1Area = (box1.getX1() - box1.getX0()) * (box1.getY1() - box1.getY0());
        float box2Area = (box2.getX1() - box2.getX0()) * (box2.getY1() - box2.getY0());
        float unionArea = box1Area + box2Area - intersectionArea;
        return intersectionArea / unionArea;
    }
}

5 domain

5.1 KeyPoint.java

记录关键点信息的实体类。

package cn.halashuo.domain;

public class KeyPoint {
    private Integer id;
    private Float x;
    private Float y;
    private Float score;

    public KeyPoint(Integer id, Float x, Float y, Float score) {
        this.id = id;
        this.x = x;
        this.y = y;
        this.score = score;
    }

    public Integer getId() {
        return id;
    }

    public Float getX() {
        return x;
    }

    public Float getY() {
        return y;
    }

    public Float getScore() {
        return score;
    }

    @Override
    public String toString() {
        return "    第 " + (id+1) + " 个关键点: " +
                " x=" + x +
                " y=" + y +
                " c=" + score +
                "\n";
    }
}

5.2 PEResult.java

记录所有人物检测信息的实体类。

package cn.halashuo.domain;

import java.util.ArrayList;
import java.util.List;

public class PEResult {

    private Float x0;
    private Float y0;
    private Float x1;
    private Float y1;
    private Float score;
    private Integer clsId;
    private List<KeyPoint> keyPointList;

    public PEResult(float[] peResult) {
        float x = peResult[0];
        float y = peResult[1];
        float w = peResult[2]/2.0f;
        float h = peResult[3]/2.0f;
        this.x0 = x-w;
        this.y0 = y-h;
        this.x1 = x+w;
        this.y1 = y+h;
        this.score = peResult[4];
        this.clsId = (int) peResult[5];
        this.keyPointList = new ArrayList<>();
        int keyPointNum = (peResult.length-6)/3;
        for (int i=0;i<keyPointNum;i++) {
            this.keyPointList.add(new KeyPoint(i, peResult[6+3*i], peResult[6+3*i+1], peResult[6+3*i+2]));
        }
    }

    public Float getX0() {
        return x0;
    }

    public Float getY0() {
        return y0;
    }

    public Float getX1() {
        return x1;
    }

    public Float getY1() {
        return y1;
    }

    public Float getScore() {
        return score;
    }

    public Integer getClsId() {
        return clsId;
    }

    public List<KeyPoint> getKeyPointList() {
        return keyPointList;
    }

    @Override
    public String toString() {
        String result = "PEResult:" +
                "  x0=" + x0 +
                ", y0=" + y0 +
                ", x1=" + x1 +
                ", y1=" + y1 +
                ", score=" + score +
                ", clsId=" + clsId +
                "\n";
        for (KeyPoint x : keyPointList) {
            result = result + x.toString();
        }
        return result;
    }
}


6 PoseEstimation.java

设置好 ONNX 文件路径及需要识别的图片路径即可。如有需要也可设置 CUDA 作为运行环境,大幅提升 FPS。

package cn.halashuo;

import ai.onnxruntime.OnnxTensor;
import ai.onnxruntime.OrtEnvironment;
import ai.onnxruntime.OrtException;
import ai.onnxruntime.OrtSession;
import cn.halashuo.domain.KeyPoint;
import cn.halashuo.domain.PEResult;
import cn.halashuo.utils.Letterbox;
import cn.halashuo.utils.NMS;
import cn.halashuo.config.PEPlotConfig;
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;

import java.nio.FloatBuffer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

public class PoseEstimation {
    static
    {
        //在使用OpenCV前必须加载Core.NATIVE_LIBRARY_NAME类,否则会报错
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    }

    public static void main(String[] args) throws OrtException {

        // 加载ONNX模型
        OrtEnvironment environment = OrtEnvironment.getEnvironment();
        OrtSession.SessionOptions sessionOptions = new OrtSession.SessionOptions();
        OrtSession session = environment.createSession("src\\main\\resources\\model\\yolov7-w6-pose.onnx", sessionOptions);
        // 输出基本信息
        session.getInputInfo().keySet().forEach(x -> {
            try {
                System.out.println("input name = " + x);
                System.out.println(session.getInputInfo().get(x).getInfo().toString());
            } catch (OrtException e) {
                throw new RuntimeException(e);
            }
        });

        // 读取 image
        Mat img = Imgcodecs.imread("src\\main\\resources\\image\\bus.jpg");
        Imgproc.cvtColor(img, img, Imgproc.COLOR_BGR2RGB);
        Mat image = img.clone();

        // 在这里先定义下线的粗细、关键的半径(按比例设置大小粗细比较好一些)
        int minDwDh = Math.min(img.width(), img.height());
        int thickness = minDwDh / 333;
        int radius = minDwDh / 168;

        // 更改 image 尺寸
        Letterbox letterbox = new Letterbox();
        letterbox.setNewShape(new Size(960, 960));
        letterbox.setStride(64);
        image = letterbox.letterbox(image);
        double ratio = letterbox.getRatio();
        double dw = letterbox.getDw();
        double dh = letterbox.getDh();
        int rows = letterbox.getHeight();
        int cols = letterbox.getWidth();
        int channels = image.channels();

        // 将Mat对象的像素值赋值给Float[]对象
        float[] pixels = new float[channels * rows * cols];
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                double[] pixel = image.get(j, i);
                for (int k = 0; k < channels; k++) {
                    // 这样设置相当于同时做了image.transpose((2, 0, 1))操作
                    pixels[rows * cols * k + j * cols + i] = (float) pixel[k] / 255.0f;
                }
            }
        }

        // 创建OnnxTensor对象
        long[] shape = {1L, (long) channels, (long) rows, (long) cols};
        OnnxTensor tensor = OnnxTensor.createTensor(environment, FloatBuffer.wrap(pixels), shape);
        HashMap<String, OnnxTensor> stringOnnxTensorHashMap = new HashMap<>();
        stringOnnxTensorHashMap.put(session.getInputInfo().keySet().iterator().next(), tensor);

        // 运行模型
        OrtSession.Result output = session.run(stringOnnxTensorHashMap);

        // 得到结果
        float[][] outputData = ((float[][][]) output.get(0).getValue())[0];

        List<PEResult> peResults = new ArrayList<>();
        for (int i=0;i<outputData.length;i++){
            PEResult result = new PEResult(outputData[i]);
            if (result.getScore()>0.25f) {
                peResults.add(result);
            }
        }

        // 对结果进行非极大值抑制
        peResults = NMS.nms(peResults, 0.65f);

        for (PEResult peResult: peResults) {
            System.out.println(peResult);
            // 画框
            Point topLeft = new Point((peResult.getX0()-dw)/ratio, (peResult.getY0()-dh)/ratio);
            Point bottomRight = new Point((peResult.getX1()-dw)/ratio, (peResult.getY1()-dh)/ratio);
            Imgproc.rectangle(img, topLeft, bottomRight, new Scalar(255,0,0), thickness);
            List<KeyPoint> keyPoints = peResult.getKeyPointList();
            // 画点
            keyPoints.forEach(keyPoint->{
                if (keyPoint.getScore()>0.50f) {
                    Point center = new Point((keyPoint.getX()-dw)/ratio, (keyPoint.getY()-dh)/ratio);
                    Scalar color = PEPlotConfig.poseKptColor.get(keyPoint.getId());
                    Imgproc.circle(img, center, radius, color, -1); //-1表示实心
                }
            });
            // 画线
            for (int i=0;i<PEPlotConfig.skeleton.length;i++){
                int indexPoint1 = PEPlotConfig.skeleton[i][0]-1;
                int indexPoint2 = PEPlotConfig.skeleton[i][1]-1;
                if ( keyPoints.get(indexPoint1).getScore()>0.5f && keyPoints.get(indexPoint2).getScore()>0.5f ) {
                    Scalar coler = PEPlotConfig.poseLimbColor.get(i);
                    Point point1 = new Point(
                            (keyPoints.get(indexPoint1).getX()-dw)/ratio,
                            (keyPoints.get(indexPoint1).getY()-dh)/ratio
                    );
                    Point point2 = new Point(
                            (keyPoints.get(indexPoint2).getX()-dw)/ratio,
                            (keyPoints.get(indexPoint2).getY()-dh)/ratio
                    );
                    Imgproc.line(img, point1, point2, coler, thickness);
                }
            }
        }
        Imgproc.cvtColor(img, img, Imgproc.COLOR_RGB2BGR);
        // 保存图像
        // Imgcodecs.imwrite("image.jpg", img);
        HighGui.imshow("Display Image", img);
        // 等待按下任意键继续执行程序
        HighGui.waitKey();

    }
}

运行结果:

input name = images
TensorInfo(javaType=FLOAT,onnxType=ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT,shape=[1, 3, 960, 960])
PEResult:  x0=164.1142, y0=357.69672, x1=341.0573, y1=800.42975, score=0.7534131, clsId=0
    第 1 个关键点:  x=246.95715 y=397.0772 c=0.9736327
    第 2 个关键点:  x=252.17633 y=389.2904 c=0.8335564
    第 3 个关键点:  x=238.11848 y=389.0014 c=0.96936846
    第 4 个关键点:  x=256.3179 y=395.70413 c=0.26490688
    第 5 个关键点:  x=217.58188 y=395.21817 c=0.9350542
    第 6 个关键点:  x=261.88034 y=443.02286 c=0.9898272
    第 7 个关键点:  x=197.16116 y=444.8831 c=0.9871879
    第 8 个关键点:  x=288.0304 y=506.67032 c=0.96026266
    第 9 个关键点:  x=232.06883 y=506.9636 c=0.97538215
    第 10 个关键点:  x=239.84201 y=521.9722 c=0.9516981
    第 11 个关键点:  x=277.70163 y=489.83765 c=0.970703
    第 12 个关键点:  x=257.0904 y=574.55255 c=0.9929459
    第 13 个关键点:  x=208.6877 y=576.3064 c=0.9918982
    第 14 个关键点:  x=271.411 y=667.6743 c=0.98325074
    第 15 个关键点:  x=203.27112 y=671.0604 c=0.98317075
    第 16 个关键点:  x=285.6367 y=760.895 c=0.91636044
    第 17 个关键点:  x=184.19543 y=757.7814 c=0.91179585

PEResult:  x0=316.40674, y0=360.82706, x1=426.57, y1=759.98706, score=0.2713838, clsId=0
    第 1 个关键点:  x=381.07776 y=401.219 c=0.97289705
    第 2 个关键点:  x=386.32465 y=393.87543 c=0.8813406
    第 3 个关键点:  x=372.7825 y=394.40253 c=0.9677005
    第 4 个关键点:  x=392.475 y=397.61212 c=0.38852227
    第 5 个关键点:  x=358.659 y=399.40833 c=0.90877795
    第 6 个关键点:  x=402.89664 y=442.8764 c=0.9850693
    第 7 个关键点:  x=344.9049 y=448.23697 c=0.98851293
    第 8 个关键点:  x=414.33658 y=491.29187 c=0.932391
    第 9 个关键点:  x=342.81982 y=514.2552 c=0.97218585
    第 10 个关键点:  x=372.42307 y=471.12778 c=0.9217508
    第 11 个关键点:  x=355.56168 y=568.59796 c=0.9616347
    第 12 个关键点:  x=395.88492 y=558.541 c=0.98994935
    第 13 个关键点:  x=356.53287 y=560.3552 c=0.99083
    第 14 个关键点:  x=402.41013 y=636.82916 c=0.97681665
    第 15 个关键点:  x=356.1795 y=645.22626 c=0.9832493
    第 16 个关键点:  x=363.65356 y=694.9054 c=0.92282534
    第 17 个关键点:  x=358.54623 y=727.66455 c=0.93670356

PEResult:  x0=120.30354, y0=488.97424, x1=189.55516, y1=765.24194, score=0.2625065, clsId=0
    第 1 个关键点:  x=128.37527 y=496.36432 c=0.039970636
    第 2 个关键点:  x=129.2826 y=488.29858 c=0.01759991
    第 3 个关键点:  x=129.88588 y=487.7059 c=0.023388624
    第 4 个关键点:  x=128.1956 y=486.87085 c=0.022539705
    第 5 个关键点:  x=129.61555 y=486.93362 c=0.026325405
    第 6 个关键点:  x=124.60656 y=506.1516 c=0.11605239
    第 7 个关键点:  x=124.11076 y=506.29758 c=0.1002911
    第 8 个关键点:  x=129.53989 y=577.0432 c=0.39045402
    第 9 个关键点:  x=129.05757 y=578.36163 c=0.4030531
    第 10 个关键点:  x=161.94182 y=651.2286 c=0.51389414
    第 11 个关键点:  x=162.66849 y=654.58966 c=0.54413426
    第 12 个关键点:  x=128.37022 y=633.2864 c=0.12599188
    第 13 个关键点:  x=128.395 y=635.9184 c=0.110325515
    第 14 个关键点:  x=128.9154 y=668.3744 c=0.098092705
    第 15 个关键点:  x=129.4807 y=669.07947 c=0.08956778
    第 16 个关键点:  x=128.86487 y=750.24927 c=0.09377599
    第 17 个关键点:  x=127.63382 y=751.3636 c=0.086484134

PEResult:  x0=710.87134, y0=352.32605, x1=839.29944, y1=781.6887, score=0.2580245, clsId=0
    第 1 个关键点:  x=815.21063 y=390.9094 c=0.37949353
    第 2 个关键点:  x=819.77454 y=382.87204 c=0.34996593
    第 3 个关键点:  x=816.6579 y=382.68045 c=0.0947094
    第 4 个关键点:  x=831.6544 y=386.69308 c=0.3775956
    第 5 个关键点:  x=830.4774 y=386.01678 c=0.044245332
    第 6 个关键点:  x=828.6047 y=435.97873 c=0.62260723
    第 7 个关键点:  x=838.1829 y=433.01996 c=0.32877648
    第 8 个关键点:  x=817.08154 y=511.3317 c=0.7232578
    第 9 个关键点:  x=824.0419 y=505.8941 c=0.21007198
    第 10 个关键点:  x=773.95953 y=496.15784 c=0.80840695
    第 11 个关键点:  x=790.11487 y=490.05597 c=0.33966026
    第 12 个关键点:  x=826.98004 y=571.4592 c=0.6694445
    第 13 个关键点:  x=830.14514 y=567.2725 c=0.508251
    第 14 个关键点:  x=796.26184 y=655.2373 c=0.81898046
    第 15 个关键点:  x=802.0529 y=650.5082 c=0.6584172
    第 16 个关键点:  x=762.1977 y=747.01917 c=0.6550461
    第 17 个关键点:  x=763.58057 y=741.5452 c=0.5072014


使用 yolov7-w6-pose 的官方模型训练并转化成 onnx 后,得到的结果维度为 n × 57 n\times 57 n×57。其中,前六个元素分别是 x、y、w、h、score、classId。关键点信息由x、y、score三个元素构成,共有17个关键点,因此每个人体监测信息共计 3 × 17 + 6 = 57 3\times 17 + 6 = 57 3×17+6=57 个元素。

要在Java实现YOLOv5模型,可以使用以下步骤: 1. 准备YOLOv5模型:首先,确保你已经获得了YOLOv5的预训练模型权重文件(.pt文件)。你可以从YOLOv5的官方GitHub页面或其他可靠来源下载。 2. 导入Java深度学习库:Java并没有像Python那样成熟的深度学习生态系统,但你可以使用一些Java深度学习库来实现YOLOv5。其中一个选择是DL4J(DeepLearning4J),它是一个基于Java深度学习库,提供了一些神经网络模型和相关工具。 3. 加载YOLOv5模型:使用DL4J或其他Java深度学习库,加载YOLOv5模型的权重文件。你需要编写Java代码来加载模型并构建相应的计算图。 4. 图像预处理:在输入图像之前,你需要对图像进行预处理以满足YOLOv5模型的要求。这通常包括图像缩放、归一化和转换为模型所需的格式。你可以使用Java图像处理库,如OpenCVJavaCV来完成这些操作。 5. 执行推理:将预处理后的图像输入到YOLOv5模型中,执行推理过程。你需要编写Java代码来处理模型输出,并解析出检测到的物体类别、边界框位置和置信度等信息。 请注意,由于Java深度学习领域的支持相对较弱,所以实现YOLOv5模型可能需要一些额外的工作和技术调整。如果你对Java没有特殊要求或限制,建议使用Python等更适合深度学习的语言来实现YOLOv5模型。这样可以更轻松地使用已经成熟的深度学习库(如PyTorch或TensorFlow)和相关工具。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值