巴涅波赫夫
码龄3年
  • 22,577
    被访问
  • 25
    原创
  • 61,556
    排名
  • 11
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2019-08-05
博客简介:

meng_xin_true的博客

查看详细资料
  • 2
    领奖
    总分 139 当月 5
个人成就
  • 获得36次点赞
  • 内容获得10次评论
  • 获得108次收藏
创作历程
  • 14篇
    2022年
  • 1篇
    2021年
  • 7篇
    2020年
  • 3篇
    2019年
成就勋章
TA的专栏
  • 深度学习
    4篇
  • 数值分析
    2篇
  • 机器学习
    9篇
  • 数学
    2篇
  • 刷题笔记
    4篇
  • 数据结构与算法python版
    4篇
  • 刷题
  • python基础语法
    1篇
兴趣领域 设置
  • 人工智能
    机器学习神经网络数据分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CNN经典模型解读---LeNet模型及mnist实战

简介LeNet是一个早期用来识别手写数字图像的卷积神经网络。这个名字来源于LeNet论文的第一作者Yann LeCun。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的结果。这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知。LeNet分为卷积层块和全连接层块两个部分,其网络结构如下图所示。卷积层块卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单
原创
发布博客 2022.04.13 ·
477 阅读 ·
0 点赞 ·
0 评论

贝塞尔曲线的python实现(简单易理解)

简介贝塞尔曲线在计算机图形学中被大量使用,通常可以产生平滑的曲线。比如ps中的钢笔工具,就是利用的这种原理。由于用计算机画图大部分时间是操作鼠标来掌握线条的路径,与手绘的感觉和效果有很大的差别。即使是一位精明的画师能轻松绘出各种图形,拿到鼠标想随心所欲的画图也不是一件容易的事。这一点是计算机万万不能代替手工的工作,所以人们只能颇感无奈。使用贝塞尔工具画图很大程度上弥补了这一缺憾。贝塞尔曲线是计算机图形图像造型的基本工具,是图形造型运用得最多的基本线条之一。通过在二维平面上放置几个锚点,根据锚点的路径和描绘
原创
发布博客 2022.04.02 ·
1276 阅读 ·
1 点赞 ·
0 评论

常见损失函数综述及区别

损失函数和风险函数首先引入损失函数与风险函数的概念。损失函数度量模型一次预测的好坏,风险函数度量平均意义下模型预测的好坏。监督学习问题是在假设空间F\Bbb FF中选取模型fff作为决策函数,对于给定的输入XXX,有f(X)f(X)f(X)给出相应的输出YYY,这个输出的预测值f(X)f(X)f(X)与真实值YYY可能一致也可能不一致,用一个损失函数(loss function)或代价函数(cost function)来度量预测错误的程度。损失函数是f(X)f(X)f(X)和YYY的非负实值函数,记作L
原创
发布博客 2022.03.23 ·
3019 阅读 ·
0 点赞 ·
0 评论

感知机手写推导

原创
发布博客 2022.03.18 ·
19 阅读 ·
0 点赞 ·
0 评论

常见激活函数适用场景及优缺点分析

什么是激活函数激活函数(Activation Function)是一种添加到人工神经网络中的函数,旨在帮助网络学习数据中的复杂模式。在神经元中,输入的input经过一系列加权求和后作用于另一个函数,这个函数就是这里的激活函数。下图为单个感知机模型的结构,其中f(⋅)f(·)f(⋅)即为激活函数,y=f(∑wixi)y=f(\sum w_ix_i)y=f(∑wi​xi​)。激活函数的作用对于一个多层感知机,给当一个小批量样本X∈Rn×dX \in \Bbb R^{n×d}X∈Rn×d,其批量大小为nn
原创
发布博客 2022.03.18 ·
1543 阅读 ·
0 点赞 ·
0 评论

灰色多变量预测模型之MGM(1,n)的手写推导

原创
发布博客 2022.03.07 ·
183 阅读 ·
1 点赞 ·
0 评论

灰色预测模型之GM(1,1)的手写推导

原创
发布博客 2022.03.07 ·
40 阅读 ·
1 点赞 ·
0 评论

XGBoost算法的手写推导

原创
发布博客 2022.03.07 ·
595 阅读 ·
0 点赞 ·
0 评论

手推梯度提升树GBDT

原创
发布博客 2022.03.07 ·
17 阅读 ·
0 点赞 ·
0 评论

手推提升算法之AdaBoost

原创
发布博客 2022.03.07 ·
60 阅读 ·
0 点赞 ·
0 评论

手推支持向量机

原创
发布博客 2022.03.07 ·
62 阅读 ·
0 点赞 ·
0 评论

手推决策树之CART算法

原创
发布博客 2022.03.06 ·
229 阅读 ·
0 点赞 ·
0 评论

手推决策树之ID3与C4.5算法

原创
发布博客 2022.03.06 ·
338 阅读 ·
0 点赞 ·
0 评论

手推机器学习算法之朴素贝叶斯

原创
发布博客 2022.03.06 ·
281 阅读 ·
0 点赞 ·
0 评论

使用PIL对图像进行灰度和二值化处理,并使用pyautogui在ps上自动绘制

首先用PIL库里的Image打开图像:img = Image.open(r'C:\Users\xxxxx\Desktop\jks.jpg')使用img.size发现这个图像为1920x1031个像素点,在ps上没法完全显示出来,因此我们需要对其进行压缩一下。width,height = img.sizeya_suo_lv = 0.8img = img.resize((int(width*ya_suo_lv),int(height*ya_suo_lv)),Image.ANTIALIA.
原创
发布博客 2021.07.31 ·
330 阅读 ·
0 点赞 ·
0 评论

接雨水问题(python实现单调栈问题)

题目描述给定n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。示例:输入: [0,1,0,2,1,0,1,3,2,1,2,1]输出: 6来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/trapping-rain-water...
原创
发布博客 2020.08.20 ·
351 阅读 ·
0 点赞 ·
0 评论

leetcode 529. 扫雷游戏 (python)

题目描述让我们一起来玩扫雷游戏!给定一个代表游戏板的二维字符矩阵。'M'代表一个未挖出的地雷,'E'代表一个未挖出的空方块,'B'代表没有相邻(上,下,左,右,和所有4个对角线)地雷的已挖出的空白方块,数字('1' 到 '8')表示有多少地雷与这块已挖出的方块相邻,'X'则表示一个已挖出的地雷。现在给出在所有未挖出的方块中('M'或者'E')的下一个点击位置(行和列索引),根据以下规则,返回相应位置被点击后对应的面板:如果一个地雷('M')被挖出,游戏就结束了- ...
原创
发布博客 2020.08.20 ·
182 阅读 ·
0 点赞 ·
0 评论

Manache(马拉车)算法基本原理与python实现

马拉车算法:在元素向两边扩散进行查找的基本思路不变的情况下,充分利用回文串的对称性,大幅减少算法时间的一种算法(时间复杂度o(n))。字符的处理在每个字符和字符串开头与结尾都添加上特殊符号“#”。然后在两端分别加入一个全新的符号,这样可以省去边界的判断。如”aba“可以改写成”@#a#b#a#$“。几个重要变量的初始化建立列表p,并给其添加和字符串等数量的0,之后会用来记录每个元素向两边扩散所能达到的最大回文长度。将max_right,max_mid_index初始...
原创
发布博客 2020.08.20 ·
256 阅读 ·
2 点赞 ·
0 评论

最小生成树之克鲁斯卡尔算法的python实现

最小生成树之克鲁斯卡尔算法的python实现克鲁斯卡尔算法是求连通网的最小生成树的另一种方法。与普里姆算法不同,它适合于求边稀疏的网的最小生成树。算法思路利用字典建立图以字典的形式建立加权连通图,通常以各顶点为字典的键,与该顶点所能连通的其余顶点再次构成一个子字典。这个子字典的键为所能连通的顶点,值为这个有向边的权重。这个子字典则构成了一个完整的值。例如以下加权连通图:可表示为:graph = { 0: {1: 4, 7: 8},...
原创
发布博客 2020.08.06 ·
643 阅读 ·
1 点赞 ·
0 评论

最小生成树之普利姆(prim)算法的python实现

普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索得到最小生成树。最小生成树即在一个带权连通图中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。算法思路利用字典建立图以字典的形式建立加权连通图,通常以各顶点为字典的键,与该顶点所能连通的其余顶点再次构成一个子字典。这个子字典的键为所能连通的顶点,值为这个有向边的权重。这个子字典则构成了一个完整的值。例如以下加权连通图:可表示为:graph = { 0: {1: ...
原创
发布博客 2020.08.05 ·
754 阅读 ·
0 点赞 ·
1 评论
加载更多