Binary Tree Maximum Path Sum

Given a binary tree, find the maximum path sum.

For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.

For example:
Given the below binary tree,

       1
      / \
     2   3

Return 6.

一开始,我觉得可以直接从每个点的和开始找起,得到每个点的和,那么最大和就是(最大的和-最小的和或者就是最大的和)但是再仔细想想,其实会发现,你很难求出每个点的和,因为你不知道到底按照什么样的顺序来进行遍历树。

那么,换个思路,直接求每个点的最大路径和。

每个点的最大路径和 = 

1、左子树的最大路径和+该点的大小

2、右子树的最大路径和+该店的大小

3、左子树的最大路径和+右子树的最大路径和+该点的大小

4、该点的大小

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    private List<Integer> list = new LinkedList<Integer>();
    private int max = Integer.MIN_VALUE;
    public int maxPathSum(TreeNode root) {
        getPathSum(root);
        for(Integer i : list) {
            max = max>i?max:i;
        }
        return max;
    }
    private int getPathSum(TreeNode root) {
        if(root==null) return 0;
        int maxLeft = getPathSum(root.left);
        int maxRight = getPathSum(root.right);
        maxLeft = maxLeft>0?maxLeft:0;
        maxRight = maxRight>0?maxRight:0;
        list.add(maxLeft+maxRight+root.val);
        return maxLeft+maxRight+root.val;
    }
}

看起来好像没什么逻辑问题,一跑就发现错的一塌糊涂。错在哪里呢?如下:

                 1

       2                  3

4           5        6            7

实际应是5+2+1+3+&=18 而不是4+2+5+1+3+6+7=28

因为4+5+2 也即左子树+右子树+该节点的和 是不可以再加别的结点了。

代码如下:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    
    private List<Integer> list = new LinkedList<Integer>();
    private int max = Integer.MIN_VALUE;
    public int maxPathSum(TreeNode root) {
        getPathSum(root,0);
        for(Integer i : list) {
            max = max>i?max:i;
        }
        return max;
    }
    //flag==0 代表不可以再往上
    //flag==1 代表还可以再往上
    private int getPathSum(TreeNode root,int flag) {
        if(root==null) return 0;
        int maxLeft0 = getPathSum(root.left,0);
        int maxLeft1 = getPathSum(root.left,1);
        int maxRight0 = getPathSum(root.right,0);
        int maxRight1 = getPathSum(root.right,1);
        if(flag==0) {
            int max0 = Math.max(maxLeft1,0)+Math.max(maxRight1,0)+root.val;
            list.add(max0);
            return max0;
        } else {
            int max1 = Math.max(Math.max(maxLeft1,maxRight1),0)+root.val;
            list.add(max1);
            return max1;
        }
    }
}

跑的两个小数据没有问题,但是整体跑的时候,TLE了。

看了下别人的解答,发现,比我大简单多了,不过思想差不多,通过函数来返回左子树+该节点或者右子树+该节点,通过全局变量 maxSum来保存左子树+右子树+该节点的最大值。

代码如下:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    private int maxSum = Integer.MIN_VALUE;
    public int maxPathSum(TreeNode root) {
        getPathSum(root);
        return maxSum;
    }
    private int getPathSum(TreeNode root) {
        if(root==null) return 0;
        int leftMax = getPathSum(root.left);
        int rightMax = getPathSum(root.right);
        maxSum = Math.max(leftMax+rightMax+root.val,maxSum);
        int ret = Math.max(rightMax,leftMax)+root.val;
        return ret>0?ret:0;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值