Time Limit: 2000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
Input
Output
Sample Input
1 2 4 0 100 0 300 0 600 150 750
Sample Output
212.13
Source
思路:
对于我们要连接所有城市的这一任务,明显无疑需要用到最小生成树的算法来贪心的建树,那么对于s个有无线网络的城市要如何选择才好呢?我们不如这样来想:
1、因为我们是按照剩余建造的边中最大值作为D的值来输出,那么我们一定是尽量的让D小,也就是说在入树的边中选取最大边让他尽可能小,才是我们要的结果,既然是这样,我们应该尽量将这s个城市,建造出来之后,让一些树中的边权尽可能大的边不许要建造即可。
2、至于我们要拆除的边,我们已经明确了:尽量让其边权值更大,那么我们s个城市如何分配呢?首先我们先这样来处理,使用两个点,来使得树中最大权值边不需要建造了,我们不妨拿出例子:
按照刚刚情况来看,我们选取节点1、5来使得权值为10的边不需要建造,因为这个时候S=3,所以我们还有一个点可以选,这个时候我们想要贪心的使得9这条边不需要建造,这个时候D就可以等于5了,是最理想的状态,那么是不是去掉权值为9这条边也是一定需要两个点来搞定呢?明显不需要,这个时候我们再选取一下节点4 ,使得1、2、5三个节点都相互连通了,相当于我们的图变成只有1、2、3三个节点所构成的树了,这个时候我们取得最大权值边就是D的值,为5。也就是说,有s个点,就一定能够去掉S-1条边,这个时候我们直接贪心去边即可。
我们设ans【】数组里边是升序排序的入树的边权值。
那么不难理解,这个D取决于s的个数,D=ans【入树的边的个数(n-1)-(s-1)】即可、
AC代码:
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std;
struct path
{
int x,y;
double w;
}a[500*500+50];
int x[505];
int y[505];
double ans[505];
int f[505];
double dis(int i,int j)
{
double d=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
return d;
}
double cmp(path a,path b)
{
return a.w<b.w;
}
int find(int x)
{
int r=x;
while(f[r]!=r)
{
r=f[r];
}
return r;
}
void merge(int x,int y)
{
int xx=find(x);
int yy=find(y);
if(xx!=yy)
{
f[xx]=yy;
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int s,n;
scanf("%d%d",&s,&n);
for(int i=0;i<n;i++)f[i]=i;
for(int i=0;i<n;i++)
{
scanf("%d%d",&x[i],&y[i]);
}
int cont=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
a[cont].x=i;
a[cont].y=j;
a[cont++].w=dis(i,j);
}
}
int cont2=0;
sort(a,a+cont,cmp);
for(int i=0;i<cont;i++)
{
if(find(a[i].x)!=find(a[i].y))
{
ans[cont2++]=a[i].w;
merge(a[i].x,a[i].y);
}
}
printf("%.2f\n",ans[cont2-s]);
}
}