Hbase 进阶

一、RegionServer 架构

在这里插入图片描述
1)StoreFile
保存实际数据的物理文件,StoreFile以Hfile的形式存储在HDFS上。每个Store会有一个或多个StoreFile(HFile),数据在每个StoreFile中都是有序的。
2)MemStore
写缓存,由于HFile中的数据要求是有序的,所以数据是先存储在MemStore中,排好序后,等到达刷写时机才会刷写到HFile,每次刷写都会形成一个新的HFile。
3)WAL
由于数据要经MemStore排序后才能刷写到HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个叫做Write-Ahead logfile的文件中,然后再写入MemStore中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。
4)BlockCache
读缓存,每次查询出的数据会缓存在BlockCache中,方便下次查询。

二、写流程

在这里插入图片描述
写流程:
1)Client先访问zookeeper,获取hbase:meta表位于哪个Region Server。
2)访问对应的Region Server,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个Region Server中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的meta cache,方便下次访问。
3)与目标Region Server进行通讯;
4)将数据顺序写入(追加)到WAL;
5)将数据写入对应的MemStore,数据会在MemStore进行排序;
6)向客户端发送ack;
7)等达到MemStore的刷写时机后,将数据刷写到HFile。

三、MemStore Flush

在这里插入图片描述
MemStore刷写时机:
1.当某个memstore的大小达到了hbase.hregion.memstore.flush.size(默认值128M),其所在region的所有memstore都会刷写。
当memstore的大小达到了
hbase.hregion.memstore.flush.size(默认值128M)
hbase.hregion.memstore.block.multiplier(默认值4)
时,会阻止继续往该memstore写数据。

2.当region server中memstore的总大小达到
java_heapsize
*hbase.regionserver.global.memstore.size(默认值0.4)
*hbase.regionserver.global.memstore.size.lower.limit(默认值0.95),
region会按照其所有memstore的大小顺序(由大到小)依次进行刷写。直到region server中所有memstore的总大小减小到上述值以下。
当region server中memstore的总大小达到
java_heapsize
*hbase.regionserver.global.memstore.size(默认值0.4)
时,会阻止继续往所有的memstore写数据。

3.到达自动刷写的时间,也会触发memstore flush。自动刷新的时间间隔由该属性进行配置hbase.regionserver.optionalcacheflushinterval(默认1小时)。

4.当WAL文件的数量超过hbase.regionserver.max.logs,region会按照时间顺序依次进行刷写,直到WAL文件数量减小到hbase.regionserver.max.logs以下(该属性名已经废弃,现无需手动设置,最大值为32)。

四、读流程

1)整体流程
在这里插入图片描述
2)Merge细节
在这里插入图片描述

五、读流程

1)Client先访问zookeeper,获取hbase:meta表位于哪个Region Server。
2)访问对应的Region Server,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个Region Server中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的meta cache,方便下次访问。
3)与目标Region Server进行通讯;
4)分别在MemStore和Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不同的类型(Put/Delete)。
5)将查询到的新的数据块(Block,HFile数据存储单元,默认大小为64KB)缓存到Block Cache。
6)将合并后的最终结果返回给客户端。
StoreFile Compaction
由于memstore每次刷写都会生成一个新的HFile,且同一个字段的不同版本(timestamp)和不同类型(Put/Delete)有可能会分布在不同的HFile中,因此查询时需要遍历所有的HFile。为了减少HFile的个数,以及清理掉过期和删除的数据,会进行StoreFile Compaction。
Compaction分为两种,分别是Minor Compaction和Major Compaction。Minor Compaction会将临近的若干个较小的HFile合并成一个较大的HFile,并清理掉部分过期和删除的数据。Major Compaction会将一个Store下的所有的HFile合并成一个大HFile,并且会清理掉所有过期和删除的数据。
在这里插入图片描述

六、Region Split

默认情况下,每个Table起初只有一个Region,随着数据的不断写入,Region会自动进行拆分。刚拆分时,两个子Region都位于当前的Region Server,但处于负载均衡的考虑,HMaster有可能会将某个Region转移给其他的Region Server。
Region Split时机:
1.当1个region中的某个Store下所有StoreFile的总大小超过hbase.hregion.max.filesize,该Region就会进行拆分(0.94版本之前)。
2.当1个region中的某个Store下所有StoreFile的总大小超过Min(initialSizeR^3 ,hbase.hregion.max.filesize"),该Region就会进行拆分。其中initialSize的默认值为2hbase.hregion.memstore.flush.size,R为当前Region Server中属于该Table的Region个数(0.94版本之后)。
具体的切分策略为:
第一次split:1^3 * 256 = 256MB
第二次split:2^3 * 256 = 2048MB
第三次split:3^3 * 256 = 6912MB
第四次split:4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB
后面每次split的size都是10GB了。
3.Hbase 2.0引入了新的split策略:如果当前RegionServer上该表只有一个Region,按照2 * hbase.hregion.memstore.flush.size分裂,否则按照hbase.hregion.max.filesize分裂。
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Docker HBase 是 Docker 容器化技术与 Apache HBase 数据存储系统结合的一种应用。HBase 是一个分布式、列式、可伸缩的 NoSQL 数据库,主要用于大规模数据存储和实时查询。将 HBase 安装在 Docker 镜像中,可以简化部署流程,使得开发者可以在本地或生产环境中快速启动并管理 HBase 实例,特别是对于那些需要频繁迭代和测试的大数据场景非常有用。 具体来说,使用 Docker HBase 的好处包括: 1. **快速部署**:Docker 提供了一种轻量级的方式来打包软件及其依赖环境,这使得部署 HBase 变得更快且一致。 2. **资源隔离**:每个 HBase 容器都是独立运行的,这意味着它们之间不会相互影响,有助于更好地管理资源。 3. **易于扩展**:如果需要增加更多的处理能力,可以通过增加容器实例来水平扩展 HBase。 4. **一致性保证**:由于 Docker 的镜像模式,HBase 的环境配置保持一致,减少了配置问题。 5. **开发环境统一**:开发人员可以在本地开发环境中使用相同的 Docker 镜像构建和测试 HBase 应用。 要开始使用 Docker HBase,你需要做以下几步: 1. **安装 Docker**:确保你的机器上已经安装了 Docker 并运行正常。 2. **查找 Docker HBase 镜像**:在 Docker Hub 上搜索 "hbase" 或者 "apache/hbase",选择官方镜像或者适合你的版本。 3. **运行容器**:使用 `docker run` 命令启动 HBase 容器,并指定所需的参数,如端口映射、持久卷等。 4. **连接到 HBase**:通过 Docker 集成的工具(如 `docker exec`)或者专门的客户端工具(如 HBase shell)连接到容器内部的 HBase 服务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值