Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2 1 2
Sample Output
2 7
Author
lcy
Source
Recommend
lcy
解题思路:1,递推递推,先分析下直线分割平面的情况,增加第n条直线的时候,跟之前的直线最多有n-1个交点,此时分出的部分多出了(n-1)+1。
2.折线也是同理,f(1)=2,f(2)=7,先画好前面n-1条折线,当增加第n条,折线时,此时与图形新的交点最多有2*2(n-1)个,所以分出的部分多出了2*2(n-1)+1,所以推出f(n)=f(n-1)+4*(n-1)+1,n>=3。
代码如下:
[cpp] view plain copy
- #include <stdio.h>
- int main()
- {
- long long a[10010];
- a[1]=2;
- a[2]=7;
- for(int i=3;i<10010;i++)
- {
- a[i]=a[i-1]+4*(i-1)+1;
- }
- int t;
- scanf("%d",&t);
- int n;
- while(t--)
- {
- scanf("%d",&n);
- printf("%lld\n",a[n]);
- }
- return 0;
- }