自用-隐马尔可夫模型HMM

1.马尔可夫预测及马尔可夫链

马尔可夫链:设{Xn}(n=0,1,2......)是一个随机序列,可以表示不同的状态(如染病,赚钱等)那么如果有人第一天处于状态1,第二天处于状态2......以此类推,我得知了他的前N天的所有状态,我想预测他的第N+1天的状态,则条件概率表达式为:P\left \{ X_{N+1}=2|X_{1}=1,X_{2}=2......X_{N}=N \right \}=P\left \{ X_{N+1}=2|X_{N}=N \right \}

这也就代表着,我后一天的概率只与前一天的状态有关

时齐马尔科夫链:若对于一条马尔科夫链,满足条件:P\left \{ X_{m+n}=a|X_{n}=b \right \}=p_{a+b}(m)也就是某人第n天处于状态b,m天后处于状态a的概率为p_{a+b}(m)那么则称这条马尔科夫链满足时齐性。我们想通过这个式子表达一种观念,即:从某种状态(b)转换到某种状态(a)的概率只与时间间隔有关,与起始时刻等均无关。

注:时齐性是由问题本身决定的(需要查文献)

当m=1时,所有的p_{a+b}(1)满足的矩阵叫做一步转移矩阵,一步转移概率则需要通过查阅资料后根据统计数据算估计值

2.具体操作过程:

设存在一个过程:状态只有4种

1 2 3 4 2 3 1 2......

那我们假设待求的状态为3,那么我们先统计3到其他状态,即在过程中3-1,3-2,3-3,3-4的次数分别为a,b,c,d那么一步转移矩阵的第三行就是:a/(a+b+c+d) b/(a+b+c+d) c/(a+b+c+d) d/(a+b+c+d).......通过这样的步骤我们就可以建立起整个一步转移矩阵,我们设其为P。然后我们通过估计可以算出起始行向量为P^{0},那么在经历n次后我们最终这个概率矩阵P^{n}=P^{^{0}}*P^{^{n}},即可完成预测。

3.隐马尔可夫模型(HMM)基本概念

当我们想对一个特征进行预测时,如天气的好坏,降雨量的多少等,现有的数据集并没有包含该项特征,但该特征符合马尔可夫,我们可以通过一些可以观测到的特征,比如海藻的干燥情况来推断出降雨量的多少,这就是隐马尔科夫的核心思想。

数学定义:

\left \{ Q_{n} \right \}=\left \{ Q_{1},Q_{2}......Q_{n} \right \}为所有可能的状态(降雨量多少....)

\left\{V_{m}\right\}=\left \{ V_{1},V_{2}.......V_{m} \right \}为所有可观测的状态(海藻干不干....)

\left\{O_{t}\right\}=\left\{O_{1},O_{2}......O_{t}\right\}为长度为t的观测序列({干,不干,半干,干......})

\left\{I_{t}\right\}=\left\{I_{1},I_{2}....I_{t}\right\}为长度为t的状态序列({1000,500,1000......})

其中Q是不可见的,而V是可见的.

那么主要参数就只有三个:A,B,Π

a_{ij}=P\left\{i_{t+1}=q_{j}|i_{t}=q_{i}\right\}(即t时刻为i状态t+1时刻变为j状态的概率)

b_{ij}=P\left\{i_{t}=q_{i}|o_{t}=v_{j}\right\}(即t时刻状态为i的情况下观测到j的概率)

\pi _{i}=P\left\{i=q_{i}\right\}就是在t等于1的时候取到q_{i}的概率

4.三大基本问题

懒得写了,直接贴链接一文带你了解隐马尔可夫模型(含详细推导) - 知乎 (zhihu.com)

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值