LeetCode 84. 柱状图中最大的矩形

题目描述

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]

图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。

示例:

输入: [2,1,5,6,2,3]
输出: 10

问题分析

这又是一道单调栈的经典问题,此题用的是递增栈。当栈为空或者当前数大于等于栈顶元素对应的数时,将该数对应的下标入栈;而当前数小于栈顶元素对应的数时,将栈顶元素弹出,并计算以该元素对应的数为矩形的高,以当前元素减去现在的栈顶元素再减1为矩形的长,计算矩形的面积。当遇到将栈顶元素弹出后栈为空时,说明该元素对应的数是数组中到当前元素之前最小的,所以矩形的长为当前元素的值,再计算矩形的面积。在进行上述操作之前,应该先将数组尾部加个0,这样所有的柱形才都能被处理。

代码实现

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        heights.push_back(0);
        stack<int> sta;
        int i = 0;
        int ans = 0;
        while(i < heights.size()){
            if(sta.empty() || heights[i] >= heights[sta.top()]){
                sta.push(i);
                i++;
            }
            else{
                int temp = sta.top();
                sta.pop();
                ans = max(ans, heights[temp] * (sta.empty() ? i : (i - sta.top() - 1)));
            }
        }
        return ans;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值