题目描述
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]
。
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10
个单位。
示例:
输入: [2,1,5,6,2,3] 输出: 10
问题分析
这又是一道单调栈的经典问题,此题用的是递增栈。当栈为空或者当前数大于等于栈顶元素对应的数时,将该数对应的下标入栈;而当前数小于栈顶元素对应的数时,将栈顶元素弹出,并计算以该元素对应的数为矩形的高,以当前元素减去现在的栈顶元素再减1为矩形的长,计算矩形的面积。当遇到将栈顶元素弹出后栈为空时,说明该元素对应的数是数组中到当前元素之前最小的,所以矩形的长为当前元素的值,再计算矩形的面积。在进行上述操作之前,应该先将数组尾部加个0,这样所有的柱形才都能被处理。
代码实现
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
heights.push_back(0);
stack<int> sta;
int i = 0;
int ans = 0;
while(i < heights.size()){
if(sta.empty() || heights[i] >= heights[sta.top()]){
sta.push(i);
i++;
}
else{
int temp = sta.top();
sta.pop();
ans = max(ans, heights[temp] * (sta.empty() ? i : (i - sta.top() - 1)));
}
}
return ans;
}
};