题目描述
输入一棵二叉树前序遍历和中序遍历的结果,请重建该二叉树。
注意:
- 二叉树中每个节点的值都互不相同;
- 输入的前序遍历和中序遍历一定合法;
样例
给定:
前序遍历是:[3, 9, 20, 15, 7]
中序遍历是:[9, 3, 15, 20, 7]
返回:[3, 9, 20, null, null, 15, 7, null, null, null, null]
返回的二叉树如下所示:
3
/ \
9 20
/ \
15 7
问题分析
此题用递归来解,函数buildTree的参数是前序遍历区间和对应的中序遍历区间,返回的是两个区间表示的二叉树的根节点。前序遍历序列的第一个元素就是根节点的值,所以创建一个值为此的节点作为根节点,然后在中序遍历序列中查找根节点,设找到的位置为i,那么组成此根节点的左子树的节点,在中序遍历序列中在从ileft开始到i-1,在前序遍历序列中为从pleft+1到pleft+i-ileft,然后用求出来的区间调用递归函数buildTree来返回左子树的根节点,也就是当前根节点的左孩子;组成此根节点的右子树的节点,在中序遍历序列中在从i+1开始到iright,在前序遍历序列中为从pleft+i-ileft+1到pright,然后用求出来的区间调用递归函数buildTree来返回右子树的根节点,也就是当前根节点的右孩子。递归基是当ileft大于iright或者pleft大于pright时返回NULL。由于是递归进行的,所以当整棵树的根节点返回时,整棵树就都创建完毕了。
代码实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
return buildTree(preorder, 0, preorder.size() - 1, inorder, 0, inorder.size() - 1);
}
TreeNode* buildTree(vector<int>& preorder, int pleft, int pright, vector<int>& inorder, int ileft, int iright){
if(pleft > pright || ileft > iright)
return NULL;
int i = 0;
for(i = ileft; i <= iright; ++i)
if(preorder[pleft] == inorder[i])
break;
TreeNode* cur = new TreeNode(preorder[pleft]);
cur->left = buildTree(preorder, pleft + 1, pleft + i - ileft, inorder, ileft, i - 1);
cur->right = buildTree(preorder, pleft + i - ileft + 1, pright, inorder, i + 1, iright);
return cur;
}
};