Problem 2202 犯罪嫌疑人
Accept: 30 Submit: 69
Time Limit: 1000 mSec Memory Limit : 65536 KB
Problem Description
福尔摩斯是个大侦探,他总是在解决疑难案件。这一次的案件也不例外,案件是这样的:有编号为1到N的N位嫌疑犯,他们其中有一个犯了罪,然后每个嫌疑犯都被询问,“哪一个人犯了罪?”犯罪嫌疑人的答案只能“编号ai的嫌疑犯犯了罪”或者“编号ai的嫌疑犯没有犯罪”。当然嫌疑犯也可以说他自己(ai = i).
福尔摩斯凭着他敏锐的侦探直觉,确定地对华生说,只有M个人说了真话,其余人都是说谎。然后就没有然后了,但华生却想知道哪些人说谎哪些人又是讲真话。这个时候同样聪明的你,被誉为红旗下的名侦探是否愿意秀一下自己的侦探天赋,帮助可怜的华生嘛?
Input
第一行一个整数T(1 <= T <= 10),表示测试数据的组数。
每组数据第一行包含N(1 <= N <=10^5)和M(0 <= M <= N)两个整数,含义见题面。接下来N行,第i行是一个整数+ai或者-ai(1<= ai <= N),如果是+ai,代表第i个人说编号ai犯了罪,如果是-ai,则表示编号ai没有犯罪。
输入数据保证至少存在一个人,使得如果是他犯了罪,则恰好有 M 个人说了真话。
Output
输出为N行,第i行是第i个嫌疑犯的输出。如果第i个嫌疑犯说了是真话,输出“Truth”;如果说谎,则输出“Lie”,如果不确定,则输出“Not defined”。
Sample Input
2
3 2
-1
-2
-3
4 1
+2
-3
+4
-1
Sample Output
Not defined
Not defined
Not defined
Lie
Not defined
Lie
Not defined
Source
FOJ有奖月赛-2015年10月
Submit Back Status Discuss
题意,给出了,n个人的语句,有m个是真话。
直接判定每个人是否是罪犯,看其它的真话数是否是m个,如果是,说明这个人就可以是罪犯,得到这个后,如果,只有一种可能性,那就好说了,直接看,每个语句是否是真假就可以了。如果有多种可能性,只需要看是否可能是多种都可能,是多种可能就输出没有定义,否则只有一种可能的话,直接输出就可以了。
复杂度为o(n);
#define N 100005
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,T,m,t,a[N][2],all[2],p[N],ans[N];
int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
while(S(T)!=EOF)
{
while(T--){
S2(n,m);
fill(a,0);
fill(all,0);
fill(p,-1);
For(i,1,n+1){
S(t);
if(t < 0){
a[-t][0]++;
all[0]++;
p[i] = t;
}
else {
a[t][1]++;
all[1]++;
p[i] = t;
}
}
int first = -1;
For(i,1,n+1){
if(a[i][1] + all[0] - a[i][0] == m){
ans[i] = 1;
if(first == -1){
first = 1;
}
else
first = 2;
}
else
ans[i] = 0;
}
For(i,1,n+1){
if(first == 1){
if((p[i] > 0 && ans[p[i]] == 1) ||
(p[i] < 0 && ans[-p[i]] == 0) )
printf("Truth\n");
else printf("Lie\n");
}
else {
if((p[i] > 0 && ans[p[i]] == 0))
printf("Lie\n");
else if(p[i] < 0 && ans[-p[i]] == 0)
printf("Truth\n");
else
printf("Not defined\n");
}
}
}
}
//fclose(stdin);
//fclose(stdout);
return 0;
}