CS与GPR联合反演目标成像
(中南大学信息科学与工程学院长沙 410083)
摘 要 压缩传感(CS) 理论是在已知信号具有稀疏性或可压缩性的条件下对信号数据进行采集、编解码的新理论。压缩传感采用非自适应线性投影来保持信号的原始结构,能通过数值最优化问题准确重构原始信号. 压缩传感以远低于奈奎斯特频率进行采样,在高分辨压缩成像系统、视频图像采集系统、雷达成像以及MRI医疗成像等领域有着广阔的应用前景。本文阐述了压缩传感理论框架以及信号稀疏表示、CS 编解码模型,并进行了压缩传感与探地雷达联合反演目标成像。反演结果表明,随机孔径压缩传感成像算法比递归反向投影算法和最小二乘法所需数据量少,成像效果好,目标旁瓣小,对噪声的鲁棒性更好。
关键词 压缩传感;探地雷达;联合反演;目标成像;随机孔径成像算法
中图分类号:TN957.52
Joint Inversion of Compressive Sensing and Ground Penetrating Radar Target Imaging
ChenXing-dong LiuGao-son LeiWen-tai long-jun
(Information Science and Engineering of CSU,ChangSha 410083,China)
Abstract:Compressed Sensing(CS) theory is a novel data collection and coding theory under the condition that signal is sparse or compressible. It first employs nonadaptive linear projections that preserve the structure of the signal, and then the signal reconstruction is conducted using an optimization process from these projections. Different from the traditional signal acquisition process, compressive sensing, which is a new theory that captures and represents compressible signals at a sampling rate significantly below the Nyquist rate. It has broad applications such as high resolution compressive imaging, image and video processing systems, Radar imaging, MRI imaging, etc. In this paper, the CS framework, CS coding model are introduced, andjointinversion of CS andGPR target imaging were studied. The computer simulation results indicate that the random aperture measurements algorithm allow much fewer data, much shorter measurement time. And due to it is fully utilization of the sparse structure of interested target space, the method show much more robust and sparse image than recursive back projection(RBP)[5] and Least Square method.
Key words:CS; GPR;JointInversion; Target Imaging; Random Aperture Measurements Algorithm
1引言
探地雷达(Ground Penetrating Radar, GPR)是一种有效的浅层隐藏目标探测技术,利用电磁波在媒质电磁特性不连续处产生的反射和散射实现非金属覆盖区域中目标的成像探测[1]。GPR 是否可以有效应用,不仅取决于硬件系统的性能,同时取决于探地雷达成像算法和特征提取算法等方法的有效性。常用的GPR成像算法如距离偏移(Range Migration, RM)算法、逆时偏移(Reverse Time Migration, RTM)算法和标准反向投影(Standard Back Projection, SBP)算法[2] 递归反向投影成像算法[3]、衍射层析算法[4]等通过标量波动方程建立目标散射场和目标函数之间的关系进而对目标散射数据进行成像处理。为得到较好的成像效果,以上算法要求雷达系统对目标散射信号进行高密度采样以获取足够的成像数据。当探测区域较大时,还需要雷达系统在大采样区域实施高孔径密度采样,这导致探地雷达系统采样数据量大、测量时间长。这些算法没有考虑地下非层状目标一般仅占探测区域很小部分这一先验知识。
压缩传感(Compressed Sensing CS)理论是近几年发展起来的一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论[5,6]。该理论表明,当信号具有稀疏性或可压缩性时,通过采集少量的信号投影值就可实现信号的准确或近似重构。压缩传感技术的核心思想是将压缩与采样合并进行,首先采集信号的非自适应线性投影(测量值),然后根据相应重构算法由测量值重构原始信号。压缩传感的优点在于信号的投影测量数据量远远小于传统采样方法所获的数据量, 突破了香农采样定理的瓶颈, 使得高分辨率信号的采集成为可能[7]。
本文以压缩传感为理论基础,利用探地雷达应用中感兴趣目标区域具有稀疏特性的先验知识,采用随机孔径CS理论测量GPR信号,进行了CS与GPR联合反演目标成像。并讨论了噪声和测量矩阵对算法性能的影响
2 CS与GPR联合反演目标成像
2.1 建立目标反演空间。
首先建立GPR扫描成像目标区域。沿坐标X方向向右,Z方向(即垂直地面向下方向)向下,雷达孔径关于Z轴对称。分别在X轴(-1-1) 生成50个、Z轴(0-2)内生成50个点目标,收发天线间距2cm。
其次是设置感兴趣目标成像区域的设定。主要是横向和纵向扫描区间以及扫描间隔的问题,本仿真分别在X矢量方向扫描区间(-0.8-0.8)内生成20个点、Z矢量方向(0.2-1.8) 扫描区间内生成20个点目标。设空气中的光速,媒质介电常数设置为16。