稳定性定义:排序前后两个相等的数相对位置不变,则算法稳定。
稳定性得好处:从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。
各排序算法的稳定性:
(图源水印)
稳定的:
- 冒泡排序:小的元素往前调或者把大的元素往后调;比较是相邻的两个元素比较,交换也发生在这两个元素之间;
因为相等的元素不会进行交换,所以稳定 - 插入排序:已经有序的小序列的基础上,一次插入一个元素;想要插入的元素和已经有序的最大者开始比较,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置;如果碰见一个和插入元素相 等的,那么插入元素把想插入的元素放在相等元素的后面;相等元素的前后顺序没有改变;
- 归并排序:合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结 果序列的前面,这样就保证了稳定性;
- 基数排序
按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位;
有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优 先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前;
每次都是稳定的,稳定就完事儿了
不稳定的:
- 选择排序
每个位置选择当前元素最小的;
例子:
5 5 2
第一个位置选取最小的2,变成了2 5 5
原序列中2个5的相对前后顺序就被破坏了; - 快速排序:
选取pivot元素a[pivot],两个下标分别从左边右边开始走,左边碰到比a[pivot]大的停下来,右边碰到比a[pivot]小的停下来,交换两个元素,左边右边再继续走,直到左边右边相遇,再交换相遇位置和a[pivot]的位置的值,即swap(a[m],a[相遇])
,完成一趟快速排序;
就在这个swap的时候,会打乱稳定性
比如序列为5 3 3 4 3 8 9 10 11
,a[pivot]为第一个元素5,相遇元素为3(用括号标一下:[5] 3 3 4 [3] 8 9 10 11
)现在交换就会把元素3的稳定性打乱;
不稳定发生在中枢元素和a[j] 交换的时刻; - 希尔排序:按照不同步长对元素进行插入排序;
由于是多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱; - 堆排序:是选择排序的一种;大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点,是完全二叉树;
在一个长为n 的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n /2-1, n/2-2, …1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没 有交换,那么这2个相同的元素之间的稳定性就被破坏了;
参考链接:https://zhuanlan.zhihu.com/p/36120420