【读书摘录笔记】计量经济学入门(黄少敏) 第二部分 回归分析在实际应用中的问题

第六章 多变量回归分析模型

变量的选择

对于严肃的、要想解决实际问题的学者来说,我们必须只注意那几个关键的自变量,而且这几个自变量还必须是可以被准确地收集到数据的变量。比如说,“与领导的关系”在决定工资水平这个问题上很可能是个非常重要的因素,但是这个变量在实际调查中不容易取到样本,所以这个变量不能列入模型中。

宏观经济问题

我们知道计算国内生产总值的数学公式,即 G D P = C + I + G + E X − I M GDP = C + I + G + EX - IM GDP=C+I+G+EXIM。如果我们把GDP 当作因变量,并把C、I、G、EX 和IM 当作自变量来作回归分析的话,那就错了。因为我们所收集来的GDP 数量是由等式右边的变量的加和而得到的,上面的等式中没有系数可以估计,它们的系数都是已知的(等于1),根本没有估计的必要。但是国民经济生产净值受到政府政策( G g G_g Gg )、引进外资量( I f I_f If )、国际环境变化(如加入世贸组织WTO)、物价指数(P)、以及去年的国民经济生产净值( G D P t − 1 GDP_{t-1} GDPt1)等因素的影响。这些经济变量对于国民经济生产净值来说,都是外生变量。那么我们就可根据这种关系来建立一个经济模型
G D P t = β 0 + β 1 G D P t − 1 + β 2 G g + β 3 I f + β 4 W T O t + β 5 P t + ϵ t GDP_t = \beta_0 + \beta_1 GDP_{t-1} + \beta_2 G_g + \beta_3 I_f + \beta_4 WTO_t + \beta_5 P_t + \epsilon_t GDPt=β0+β1GDPt1+β2Gg+β3If+β4WTOt+β5Pt+ϵt
对这个模型,我们还可以根据不同的经济理论或可以收集到的数据,来对等式右边的自变量作些调整。

菲利浦斯曲线

这个曲线是指在短时期内物价指数与失业率之间的“负相关”关系。我们用 P t P_t Pt来表示物价指数, P t − 1 P_{t-1} Pt1 来表示去年的物价指数, U r U_r Ur 表示相应的失业率, U n U_n Un表示自然失业率。
log ⁡ ( P t ) = β 0 + β 1 log ⁡ ( P t − 1 ) + β 2 U r + β 3 U n + ϵ \log (P_t) = \beta_0 + \beta_1 \log (P_{t-1}) + \beta_2 U_r + \beta_3 U_n + \epsilon log(Pt)=β0+β1log(Pt1)+β2Ur+β3Un+ϵ
在短期内总供给曲线一般来说是会保持不变的。在这种情况下,当总需求曲线变化时,物价指数与失业率之间呈负相关的关系。在长期中,当总供给曲线变化时,情况就不同了。 (why 负相关?待理解)

归纳起来,在我们设计回归分析模型的时候,既要考虑必要性,又要考虑可能性。所谓必要性,就是该自变量在影响因变量上面的重要程度。所谓可能性,就是指是否可以取到样本。当然,如果某一自变量从理论上看是非常必要的因素,但在实际研究的过程中很难取到样本,那么我们就要想办法找到一个能够替代该变量的可取变量。

样本数量的要求

通常的原则应该是样本数越多越好。这里有“自由度”的概念。自由度等于样本数量减去回归分析模型中解释变量的个数再减一( d f = N − K − 1 \rm d \mathbb f = N - K - 1 df=NK1)。自由度数越大,误差就越显出其随机性,回归分析的结果会越精确、越有统计意义。但是,所要收集的样本数量越多,其研究成本就越高。在收集样本时应该注意以下几点:

  1. 在研究经费和时间的容许下,收集到尽可能多的样本。
  2. 对于横截面数据,至少要30 个样本;如果少于30个样本,我们对统计结果的准确程度就没有很大的把握了。特别是在检验模型的估计参数值时,如果样本数多于30个,其参数的统计值t 就与标准正态分布的Z 值基本相同了。也就是说,其误差的分布就服从正态分布了。
  3. 对于时间序列数据来说,时间(如年度数据)最少要12 年的数据。如果有30年的数据当然更好。可是在实际研究中,特别是在研究发展中国家的经济问题时,我们往往发现根本无法收集到30年可信的数据。那么,至少要有12年的年数据才可做回归分析。这样做得来的参数估计值就比较可靠了,在作假设检验时,我们也有足够的信心确认所得出的结论。
  4. 样本的数量一定要多于模型中的变量数。

三变量最小二乘法

KaTeX parse error: No such environment: split at position 7: \begin{̲s̲p̲l̲i̲t̲}̲ Y = & \beta_0 …
g = Σ n ϵ i 2 = Σ n ( Y i − β 0 − β 1 X 1 i − β 2 X 2 i ) 2 g = \Sigma_n \epsilon_i^2 = \Sigma_n (Y_i - \beta_0 - \beta_1 X_{1i} - \beta_2 X_{2i} )^2 g=Σnϵi2=Σn(Yiβ0β1X1iβ2X2i)2,通过一阶导、二阶导条件求极小值计算 β \beta β

通用最小二乘回归模型

设k个自变量,n个样本:
Y n × 1 = X β + ϵ Y_{n\times 1} = X\beta + \epsilon Yn×1=Xβ+ϵ
这里 X = [ 1 X 1 ⋯ X n ] = [ 1 X 11 ⋯ X 1 k 1 X 21 ⋯ X 2 k ⋯ ⋯ ⋱ ⋯ 1 X n 1 ⋯ X n k ] n × ( k + 1 ) X = \begin{bmatrix} 1 & X_1 & \cdots & X_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & \cdots & X_{1k} \\ 1 & X_{21} & \cdots & X_{2k} \\ \cdots & \cdots &\ddots & \cdots \\ 1 & X_{n1} & \cdots & X_{nk} \end{bmatrix}_{n\times (k+1)} X=[1X1Xn]=111X11X21Xn1X1kX2kXnkn×(k+1)

用最小二乘法来估计矢量 β \beta β,我们试图寻求误差平方总和 Σ n ϵ i 2 ( = ϵ ′ ϵ ) \Sigma_n \epsilon_i^2 (= \epsilon^{'}\epsilon) Σnϵi2(=ϵϵ) 的最小值。
ω = ϵ ′ ϵ = ( Y − X β ) ′ ( Y − X β ) = Y ′ Y − 2 β ′ X ′ Y + β ′ X ′ X β \omega = \epsilon^{'}\epsilon = (Y - X\beta)^{'}(Y-X\beta) = Y^{'}Y -2\beta^{'}X^{'}Y + \beta^{'}X^{'}X\beta ω=ϵϵ=(YXβ)(YXβ)=YY2βXY+βXXβ,b表示 β \beta β的估计值,
{ ∂ ω ∂ β = − 2 X ′ Y + 2 X ′ X β = 0 ∂ 2 ω ∂ β 2 = 2 X ′ X > 0 \left\{ \begin{aligned} \frac{\partial \omega}{\partial \beta} &= & -2X^{'}Y + 2 X^{'}X\beta = 0 \\ \frac{\partial^2 \omega}{\partial \beta^2} &= & 2 X^{'}X >0 \end{aligned} \right. βωβ22ω==2XY+2XXβ=02XX>0
b = ( X ′ X ) − 1 X ′ Y b = (X^{'}X)^{-1} X^{'}Y b=(XX)1XY为解的必要条件是 X ′ X X^{'}X XX可逆。

估计回归模型参数的统计检验值 t β t_{\beta} tβ。我们要用计算出的误差项来估计回归模型的方差 σ 2 \sigma^2 σ2 。我们有估计误差
ϵ ^ = Y − Y ^ = Y − X b = Y − X ( X ′ X ) − 1 X ′ Y ϵ ^ ′ ϵ ^ = ( Y − X b ) ′ ( Y − X b ) = [ Y − X ( X ′ X ) − 1 X ′ Y ] ‘ [ Y − X ( X ′ X ) − 1 X ′ Y ] E ( ϵ ^ ′ ϵ ^ ) = σ 2 ( N − K ) \begin{aligned} \hat{\epsilon} = & Y - \hat{Y} = Y - Xb \\ = & Y - X(X^{'}X)^{-1} X^{'}Y \\ \hat{\epsilon} ^{'}\hat{\epsilon}= & ( Y - Xb)^{'} ( Y - Xb)\\ = & [Y - X(X^{'}X)^{-1} X^{'}Y]^{‘}[Y - X(X^{'}X)^{-1} X^{'}Y] \\ E(\hat{\epsilon} ^{'}\hat{\epsilon}) =& \sigma^2(N - K) \end{aligned} ϵ^==ϵ^ϵ^==E(ϵ^ϵ^)=YY^=YXbYX(XX)1XY(YXb)(YXb)[YX(XX)1XY][YX(XX)1XY]σ2(NK)
那么,回归模型的方差的估计值 σ ^ 2 \hat{\sigma}^2 σ^2 s 2 s^2 s2就是
σ ^ 2 = ( Y − X b ) ′ ( Y − X b ) N − K s 2 = Y ′ Y − b ′ X ′ Y N − K \begin{aligned} \hat{\sigma}^2 = & \frac{( Y - Xb)^{'} ( Y - Xb)}{N-K} \\ s^2 = & \frac{Y^{'} Y - b^{'}X^{'}Y}{N-K} \end{aligned} σ^2=s<

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值