随机实验与自然实验--双重差分法和三重差分法

**注记:**山东大学陈强教授《高级计量经济学及Stata应用》(第二版)第18章学习笔记!
双重差分法
在做随机实验或自然实验时,实验的效果往往需要一段时间才能显现出来,而我们关心的恰恰是被解释变量试验前后的变化。为此,考虑两期面板数据:

(注:面板数据是一个m*n的数据矩阵,记录的是n个时间节点上m个对象的某一数据指标

y i t + α + γ D t + β x i t + u i + ε i t y_{it}+\alpha+\gamma D_{t}+\beta x_{it}+u_{i}+\varepsilon_{it} yit+α+γDt+βxit+ui+εit ( i = 1 , . . . , n ; t = 1 , 2 ) (i=1,...,n;t=1,2) (i=1,...,n;t=1,2)
其中 D t D_{t} Dt为试验期虚拟变量, u i u_{i} ui为不可观测的个体特征, x i t x_{it} xit为政策虚拟变量(policy dummy)。
前戏做足,重点到了,因此,当t=1时(第一期),实验组与控制组并没有受到任何不同对待,所以政策虚拟变量 x i t x_{it} xit都等于0。当t=2时(第二期),实验组 x i t = 1 x_{it}=1 xit=1,而控制组 x i t x_{it} xit依然等于0。如果该实验未能完全地随机化(eg:观测数据),则 x i t x_{it} xit可能与被遗漏的个体特征 u i u_{i} ui相关,从而导致OLS(Ordinary Least Square)估计不一致。由于是面板数据,可以对上述方程进行一阶差分,目的在于消除 u i u_{i} ui
Δ y i = γ + β x i 2 + Δ ε i \Delta y_{i}=\gamma + \beta x_{i2}+\Delta \varepsilon_{i} Δyi=γ+βxi2+Δεi
用OLS估计上式,即可得到一致估计,
β ^ O L S = Δ y ˉ t r e a t − Δ y ˉ c o n t r o l = ( y ˉ t r e a t , 2 − y ˉ t r e a t , 1 ) − ( y ˉ c o n t r o l , 2 − y ˉ c o n t r o l , 1 ) \hat{\beta}_{OLS}=\Delta \bar{y}_{treat}-\Delta \bar{y}_{control}=(\bar{y}_{treat,2}-\bar{y}_{treat,1})-(\bar{y}_{control,2}-\bar{y}_{control,1}) β^OLS=ΔyˉtreatΔyˉcontrol=(yˉtreat,2yˉtreat,1)(yˉcontrol,2yˉcontrol,1)
因此,这个估计法称为“双重差分估计量”(Difference in Difference estimator, DD),记为 β ^ D D \hat{\beta}_{DD} β^DD,即实验组的平均变化与控制组的平均变化之差。

三重差分法

双重差分法的隐含假设是,即使没有政策变化,控制组与实验组的是件趣事也一样。然而如果控制组与实验组的是件趣事不同,便无法得到对试验效应的一致估计,此时,需要进一步改进双重差分估计量。
(Difference in Difference in Difference estimator, DDD)

观测数据的处理效应
在许多情况下,并没有随机实验或自然实验的数据,而只有观测数据,这是非常糟糕的。通常会存在self selection(自我选择),无法得到一直的估计。这需要学习断点回归设计(Regression Discontinuity Design,RDD)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值