Pytorch安装教程

1. pytorch简介

PyTorch是一个开源的深度学习框架,由Facebook人工智能研究院(FAIR)开发。它提供了一套动态张量计算库,具有易于使用、高效性能和强大的扩展性等特点。PyTorch支持在GPU上运行,能够大大加速深度学习模型的训练和推理过程。
在这里插入图片描述

2. 安装准备工作

首先,访问Anaconda官网,选择适合你操作系统的版本,并下载安装包,详细的安装步骤可参考我之前写过的博客:Anaconda安装教程及Pycharm配置教程

3. 判断是否有NVIDIA显卡

在安装PyTorch之前,我们需要判断您的计算机是否安装了NVIDIA显卡,因为PyTorch的GPU版本需要NVIDIA显卡来加速计算。您可以通过以下步骤来判断:

① 打开设备管理器:在Windows上,按下Win键和X键,然后选择“设备管理器”。在macOS上,打开“系统偏好设置”,选择“硬件”选项卡,然后点击“设备管理器”。

② 查看显示适配器:在设备管理器中,展开“显示适配器”或“图形处理器”部分,查看是否有NVIDIA显卡的列表。如果有NVIDIA显卡,那么您的计算机适合安装PyTorch的GPU版本。
在这里插入图片描述

如果没有NVIDIA显卡,您可以只安装PyTorch的CPU版本。如果您有NVIDIA显卡,您还需要进行其他步骤来安装PyTorch的GPU版本。

4. 安装pytorch-GPU版本

(1). 查看CUDA显卡驱动版本

在cmd命令行终端输入nvidia-smi,可以查看到版本为12.3。

(2) 安装CUDA

① 为什么安装pytorch-GPU前一定要安装CUDA和CuDNN呢?

在安装PyTorch-GPU之前,需要先安装CUDA和cuDNN的原因如下:

  • CUDA是NVIDIA推出的并行计算平台和API模型,它使得显卡可以用于图像渲染和计算以外的目的,例如通用并行计算。PyTorch通过CUDA可以充分利用GPU的计算能力,加速深度神经网络的学习和推理过程。
  • cuDNN是CUDA的扩展库,专门针对深度神经网络中的基础操作提供高度优化的实现方式,例如卷积、池化、规范化以及激活层的前向和后向过程。使用cuDNN可以大大提高深度学习模型在GPU上的运行效率。
  • 因此,在安装PyTorch-GPU之前,需要先安装CUDA和cuDNN,以便能够充分利用GPU的计算能力,加速深度神经网络的学习和推理过程。如果不安装CUDA和cuDNN,PyTorch-GPU将无法正常工作。

从官网下载对应的CUDA版本,由于我的显卡版本为12.3,我只需要安装小于或者等于12.2都是可以的,因此这里我安装12.0。

官网地址:CUDA Toolkit Archive | NVIDIA Developer
在这里插入图片描述
下载好后,双击安装包进行安装,可以安装在自定义的目录文件夹下
选择“精简”模式,接下来一直点“下一步”就行啦~😉
查看是否安装成功,在命令行输入以下指令进行检查,出现以下类似的输出就证明安装成功。

nvcc  -V

在这里插入图片描述

(3) 安装CuDNN(加速器)

通过官网进行安装CuDNN,网址:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer
选择第一个绿色的按钮
注意:需要注册登录才能进行安装喔😁
在这里插入图片描述
安装并解压完后,将这几个文件夹复制到CUDA安装路径下,就已经安装完成啦😎
在这里插入图片描述

(4) 安装pytorch-GPU

在安装PyTorch之前,为了管理不同项目的Python环境,通常建议创建一个虚拟环境。虚拟环境可以帮助您隔离不同项目的依赖项,避免不同项目之间的冲突。以下是创建虚拟环境的步骤。
① 打开终端:在Windows上,打开Anaconda Prompt;在macOS和Linux上,打开终端;
在这里插入图片描述
② 创建虚拟环境:运行以下命令来创建一个新的虚拟环境。您可以将<env_name>替换为您喜欢的环境名称,例如“myenv”。

conda create -n <env_name> python=<version>

例如,要创建一个名为myenv的虚拟环境,其中Python版本为3.8,可以运行:

conda create -n myenv python=3.8

③ 激活虚拟环境:运行以下命令来激活刚刚创建的虚拟环境。在Windows上,使用activate命令;在macOS和Linux上,使用source命令。

conda activate <env_name>

例如,要激活名为myenv的虚拟环境,可以运行:

conda activate myenv

激活虚拟环境后,您将看到虚拟环境的命令提示符前缀显示为(<env_name>)。这意味着您现在正在使用该虚拟环境的Python解释器。

④ 安装PyTorch(GPU):在激活的虚拟环境中,使用pip安装PyTorch。根据您的需求,选择安装GPU版本。例如:(网络不佳和必要的时候可以添加国内源)

官网链接:PyTorch

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

在这里插入图片描述

5. pytorch-GPU安装验证

import torch
 
print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())  #输出为True,则安装成功

6 pytorch-CPU安装

使用清华源

conda install pytorch torchvision torchaudio cpuonly -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

在这里插入图片描述
点击y继续

出错:

Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: failed

EnvironmentNotWritableError: The current user does not have write permissions to the target environment.
  environment location: D:\AppGallery\anaconda3

在这里插入图片描述
解决办法:
主要原因:用户没有对anaconda3文件夹的读写权限,造成其原因可能是由于在安装anaconda时使用了管理员权限。

解决方法:解除对错误中location:*部分涉及的文件夹的权限限制
1、把鼠标光标移动到文件夹上,鼠标右击,在出现的选项中选择【属性】。
2、在属性界面中上方有6个选项,点击第四个【安全】。
3、接下来在更改权限的右边点击【编辑】。
4、在权限界面中点击中间的【添加】,准备添加权限。
5、在【选择用户和组】界面中点击下方的【高级】选项。
6、接下来的界面中点击【立即查找】,这时会在下方出现很多用户选项,选择【Everyone】。
7、最后再权限中把所有的权限都给勾选上,点击【确定】。
最后重新安装就可以了。
在这里插入图片描述

在这里插入图片描述

重新安装一遍:
在这里插入图片描述在这里插入图片描述在这里插入图片描述

验证!!是否安装成功

conda list

在这里插入图片描述
显示的列表内,有pytorch相关内容,即安装成功!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信知阁

您的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值