1. pytorch简介
PyTorch是一个开源的深度学习框架,由Facebook人工智能研究院(FAIR)开发。它提供了一套动态张量计算库,具有易于使用、高效性能和强大的扩展性等特点。PyTorch支持在GPU上运行,能够大大加速深度学习模型的训练和推理过程。

2. 安装准备工作
首先,访问Anaconda官网,选择适合你操作系统的版本,并下载安装包,详细的安装步骤可参考我之前写过的博客:Anaconda安装教程及Pycharm配置教程
3. 判断是否有NVIDIA显卡
在安装PyTorch之前,我们需要判断您的计算机是否安装了NVIDIA显卡,因为PyTorch的GPU版本需要NVIDIA显卡来加速计算。您可以通过以下步骤来判断:
① 打开设备管理器:在Windows上,按下Win键和X键,然后选择“设备管理器”。在macOS上,打开“系统偏好设置”,选择“硬件”选项卡,然后点击“设备管理器”。
② 查看显示适配器:在设备管理器中,展开“显示适配器”或“图形处理器”部分,查看是否有NVIDIA显卡的列表。如果有NVIDIA显卡,那么您的计算机适合安装PyTorch的GPU版本。

如果没有NVIDIA显卡,您可以只安装PyTorch的CPU版本。如果您有NVIDIA显卡,您还需要进行其他步骤来安装PyTorch的GPU版本。
4. 安装pytorch-GPU版本
(1). 查看CUDA显卡驱动版本
在cmd命令行终端输入nvidia-smi,可以查看到版本为12.3。
(2) 安装CUDA
① 为什么安装pytorch-GPU前一定要安装CUDA和CuDNN呢?
在安装PyTorch-GPU之前,需要先安装CUDA和cuDNN的原因如下:
- CUDA是NVIDIA推出的并行计算平台和API模型,它使得显卡可以用于图像渲染和计算以外的目的,例如通用并行计算。PyTorch通过CUDA可以充分利用GPU的计算能力,加速深度神经网络的学习和推理过程。
- cuDNN是CUDA的扩展库,专门针对深度神经网络中的基础操作提供高度优化的实现方式,例如卷积、池化、规范化以及激活层的前向和后向过程。使用cuDNN可以大大提高深度学习模型在GPU上的运行效率。
- 因此,在安装PyTorch-GPU之前,需要先安装CUDA和cuDNN,以便能够充分利用GPU的计算能力,加速深度神经网络的学习和推理过程。如果不安装CUD

最低0.47元/天 解锁文章
4083





