93.复原IP地址
给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。
例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效的 IP 地址。
示例 1:
- 输入:s = "25525511135"
- 输出:["255.255.11.135","255.255.111.35"]
示例 2:
- 输入:s = "0000"
- 输出:["0.0.0.0"]
示例 3:
- 输入:s = "1111"
- 输出:["1.1.1.1"]
示例 4:
- 输入:s = "010010"
- 输出:["0.10.0.10","0.100.1.0"]
示例 5:
- 输入:s = "101023"
- 输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]
提示:
- 0 <= s.length <= 3000
- s 仅由数字组成
#算法公开课
《代码随想录》算法视频公开课 (opens new window):回溯算法如何分割字符串并判断是合法IP?| LeetCode:93.复原IP地址 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解。
#思路
做这道题目之前,最好先把131.分割回文串 (opens new window)这个做了。
这道题目相信大家刚看的时候,应该会一脸茫然。
其实只要意识到这是切割问题,切割问题就可以使用回溯搜索法把所有可能性搜出来,和刚做过的131.分割回文串 (opens new window)就十分类似了。
切割问题可以抽象为树型结构,如图:
#回溯三部曲
- 递归参数
在131.分割回文串 (opens new window)中我们就提到切割问题类似组合问题。
startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。
本题我们还需要一个变量pointNum,记录添加逗点的数量。
所以代码如下:
vector<string> result;// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
void backtracking(string& s, int startIndex, int pointNum) {
- 递归终止条件
终止条件和131.分割回文串 (opens new window)情况就不同了,本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。
pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。
然后验证一下第四段是否合法,如果合法就加入到结果集里
代码如下:
if (pointNum == 3) { // 逗点数量为3时,分隔结束
// 判断第四段子字符串是否合法,如果合法就放进result中
if (isValid(s, startIndex, s.size() - 1)) {
result.push_back(s);
}
return;
}
- 单层搜索的逻辑
在131.分割回文串 (opens new window)中已经讲过在循环遍历中如何截取子串。
在for (int i = startIndex; i < s.size(); i++)
循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。
如果合法就在字符串后面加上符号.
表示已经分割。
如果不合法就结束本层循环,如图中剪掉的分支:
然后就是递归和回溯的过程:
递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.
),同时记录分割符的数量pointNum 要 +1。
回溯的时候,就将刚刚加入的分隔符.
删掉就可以了,pointNum也要-1。
代码如下:
for (int i = startIndex; i < s.size(); i++) {
if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法
s.insert(s.begin() + i + 1 , '.'); // 在i的后面插入一个逗点
pointNum++;
backtracking(s, i + 2, pointNum); // 插入逗点之后下一个子串的起始位置为i+2
pointNum--; // 回溯
s.erase(s.begin() + i + 1); // 回溯删掉逗点
} else break; // 不合法,直接结束本层循环
}
#判断子串是否合法
最后就是在写一个判断段位是否是有效段位了。
主要考虑到如下三点:
- 段位以0为开头的数字不合法
- 段位里有非正整数字符不合法
- 段位如果大于255了不合法
题解: 这个题要重新思考判断逻辑和分割逻辑,用分割的点数来进行结束判断,用添加和删除"."来进行递归和回溯,然后用一个单独的函数来判断取到的字段是否合法。
class Solution {
List<String> result = new ArrayList<>();
public List<String> restoreIpAddresses(String s) {
if (s.length() > 12) return result; // 算是剪枝了
callTraverse(s,0,0);
return result;
}
private void callTraverse(String s, int startindex, int pointNum){
//判断第四个字符串是否有效
if(pointNum == 3 && isValid(s,startindex,s.length() - 1)){
result.add(s);
return;
}
for(int i = startindex; i < s.length();i++){
if(isValid(s,startindex,i)){
s = s.substring(0,i+1) + "." +s.substring(i+1);
callTraverse(s,i+2,pointNum+1);
s = s.substring(0,i+1) + s.substring(i+2);
}else{
break;
}
}
}
// 判断字符串s在左闭⼜闭区间[start, end]所组成的数字是否合法
private boolean isValid(String s, int start, int end){
//字符串长度大于3无效
if(start > end || (end - start) > 3){
return false;
}
//开头是0的无效
if(s.charAt(start) == '0' && start != end){
return false;
}
//存在无效字符的无效
int num = 0;
for (int i = start; i <= end; i++) {
if (s.charAt(i) > '9' || s.charAt(i) < '0') { // 遇到⾮数字字符不合法
return false;
}
num = num * 10 + (s.charAt(i) - '0');
if (num > 255) { // 如果⼤于255了不合法
return false;
}
}
return true;
}
}
78.子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例: 输入: nums = [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
#算法公开课
《代码随想录》算法视频公开课 (opens new window):回溯算法解决子集问题,树上节点都是目标集和! | LeetCode:78.子集 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解。
#思路
求子集问题和77.组合 (opens new window)和131.分割回文串 (opens new window)又不一样了。
如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!
其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。
那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!
有同学问了,什么时候for可以从0开始呢?
求排列问题的时候,就要从0开始,因为集合是有序的,{1, 2} 和{2, 1}是两个集合,排列问题我们后续的文章就会讲到的。
以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:
从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合。
#回溯三部曲
- 递归函数参数
全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)
递归函数参数在上面讲到了,需要startIndex。
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
递归终止条件
从图中可以看出:
剩余集合为空的时候,就是叶子节点。
那么什么时候剩余集合为空呢?
就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:
if (startIndex >= nums.size()) {
return;
}
其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了。
- 单层搜索逻辑
求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树。
题解: 这个题让我莫名的思考了很久,其实没那么复杂,之前总是判断是否是结尾才把path添加到result中,其实这个题需要遍历所有的可能,每一个path的组合都需要添加。
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> subsets(int[] nums) {
callTraverse(nums,0,nums.length);
return result;
}
private void callTraverse(int[] nums, int startindex, int size){
result.add(new ArrayList(path));
if(startindex >= size){
return;
}
for(int i = startindex;i < size; i++){
path.add(nums[i]);
callTraverse(nums, i+1,size);
path.removeLast();
}
}
}
90.子集II
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
- 输入: [1,2,2]
- 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]
#算法公开课
《代码随想录》算法视频公开课 (opens new window):回溯算法解决子集问题,如何去重?| LeetCode:90.子集II (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解。
#思路
做本题之前一定要先做78.子集 (opens new window)。
这道题目和78.子集 (opens new window)区别就是集合里有重复元素了,而且求取的子集要去重。
那么关于回溯算法中的去重问题,在40.组合总和II (opens new window)中已经详细讲解过了,和本题是一个套路。
剧透一下,后期要讲解的排列问题里去重也是这个套路,所以理解“树层去重”和“树枝去重”非常重要。
用示例中的[1, 2, 2] 来举例,如图所示: (注意去重需要先对集合排序)
从图中可以看出,同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集!
本题就是其实就是回溯算法:求子集问题! (opens new window)的基础上加上了去重,去重我们在回溯算法:求组合总和(三) (opens new window)也讲过了,所以我就直接给出代码了:
题解: 这个题还是用到重点是如何不出现重复组合,还是要记住used数组的使用和方法。
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
boolean used[];
public List<List<Integer>> subsetsWithDup(int[] nums) {
used = new boolean[nums.length];
Arrays.fill(used,false);
Arrays.sort(nums);
callTraverse(nums, 0, nums.length);
return result;
}
private void callTraverse(int[] nums, int start, int size){
result.add(new ArrayList(path));
if(start >= size){
return;
}
for(int i = start; i < size; i++){
if(i > 0 && nums[i] == nums[i-1] && used[i-1] == false){
continue;
}
path.add(nums[i]);
used[i] = true;
callTraverse(nums, i+1,size);
used[i] = false;
path.removeLast();
}
}
}
当然这还有一个不加used数组的办法,直接跳过当前数层使用过的元素。
class Solution {
List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> subsetsWithDup( int[] nums ) {
Arrays.sort( nums );
subsetsWithDupHelper( nums, 0 );
return res;
}
private void subsetsWithDupHelper( int[] nums, int start ) {
res.add( new ArrayList<>( path ) );
for ( int i = start; i < nums.length; i++ ) {
// 跳过当前树层使用过的、相同的元素
if ( i > start && nums[i - 1] == nums[i] ) {
continue;
}
path.add( nums[i] );
subsetsWithDupHelper( nums, i + 1 );
path.removeLast();
}
}
}
#