day28 第七章 回溯算法● 93.复原IP地址 ● 78.子集 ● 90.子集II

93.复原IP地址

力扣题目链接(opens new window)

给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。

有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。

例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效的 IP 地址。

示例 1:

  • 输入:s = "25525511135"
  • 输出:["255.255.11.135","255.255.111.35"]

示例 2:

  • 输入:s = "0000"
  • 输出:["0.0.0.0"]

示例 3:

  • 输入:s = "1111"
  • 输出:["1.1.1.1"]

示例 4:

  • 输入:s = "010010"
  • 输出:["0.10.0.10","0.100.1.0"]

示例 5:

  • 输入:s = "101023"
  • 输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]

提示:

  • 0 <= s.length <= 3000
  • s 仅由数字组成

#算法公开课

《代码随想录》算法视频公开课 (opens new window)回溯算法如何分割字符串并判断是合法IP?| LeetCode:93.复原IP地址 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

做这道题目之前,最好先把131.分割回文串 (opens new window)这个做了。

这道题目相信大家刚看的时候,应该会一脸茫然。

其实只要意识到这是切割问题,切割问题就可以使用回溯搜索法把所有可能性搜出来,和刚做过的131.分割回文串 (opens new window)就十分类似了。

切割问题可以抽象为树型结构,如图:

93.复原IP地址

#回溯三部曲

  • 递归参数

131.分割回文串 (opens new window)中我们就提到切割问题类似组合问题。

startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。

本题我们还需要一个变量pointNum,记录添加逗点的数量。

所以代码如下:

vector<string> result;// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
void backtracking(string& s, int startIndex, int pointNum) {

  • 递归终止条件

终止条件和131.分割回文串 (opens new window)情况就不同了,本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。

pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。

然后验证一下第四段是否合法,如果合法就加入到结果集里

代码如下:

if (pointNum == 3) { // 逗点数量为3时,分隔结束
    // 判断第四段子字符串是否合法,如果合法就放进result中
    if (isValid(s, startIndex, s.size() - 1)) {
        result.push_back(s);
    }
    return;
}
  • 单层搜索的逻辑

131.分割回文串 (opens new window)中已经讲过在循环遍历中如何截取子串。

for (int i = startIndex; i < s.size(); i++)循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。

如果合法就在字符串后面加上符号.表示已经分割。

如果不合法就结束本层循环,如图中剪掉的分支:

93.复原IP地址

然后就是递归和回溯的过程:

递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.),同时记录分割符的数量pointNum 要 +1。

回溯的时候,就将刚刚加入的分隔符. 删掉就可以了,pointNum也要-1。

代码如下:

for (int i = startIndex; i < s.size(); i++) {
    if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法
        s.insert(s.begin() + i + 1 , '.');  // 在i的后面插入一个逗点
        pointNum++;
        backtracking(s, i + 2, pointNum);   // 插入逗点之后下一个子串的起始位置为i+2
        pointNum--;                         // 回溯
        s.erase(s.begin() + i + 1);         // 回溯删掉逗点
    } else break; // 不合法,直接结束本层循环
}

#判断子串是否合法

最后就是在写一个判断段位是否是有效段位了。

主要考虑到如下三点:

  • 段位以0为开头的数字不合法
  • 段位里有非正整数字符不合法
  • 段位如果大于255了不合法

题解: 这个题要重新思考判断逻辑和分割逻辑,用分割的点数来进行结束判断,用添加和删除"."来进行递归和回溯,然后用一个单独的函数来判断取到的字段是否合法。

class Solution {
    List<String> result = new ArrayList<>();
    public List<String> restoreIpAddresses(String s) {
        if (s.length() > 12) return result; // 算是剪枝了
        callTraverse(s,0,0);
        return result;
    }
    private void callTraverse(String s, int startindex, int pointNum){
        //判断第四个字符串是否有效
        if(pointNum == 3 && isValid(s,startindex,s.length() - 1)){
            result.add(s);
            return;
        }
        for(int i = startindex; i < s.length();i++){
            if(isValid(s,startindex,i)){
                s = s.substring(0,i+1) + "." +s.substring(i+1);
                callTraverse(s,i+2,pointNum+1);
                s = s.substring(0,i+1) + s.substring(i+2);
            }else{
                break;
            }
        }
    }
    // 判断字符串s在左闭⼜闭区间[start, end]所组成的数字是否合法
    private boolean isValid(String s, int start, int end){
        //字符串长度大于3无效
        if(start > end || (end - start) > 3){
            return false;
        }
        //开头是0的无效
        if(s.charAt(start) == '0' && start != end){
            return false;
        }
        //存在无效字符的无效
        int num = 0;
        for (int i = start; i <= end; i++) {
            if (s.charAt(i) > '9' || s.charAt(i) < '0') { // 遇到⾮数字字符不合法
                return false;
            }
            num = num * 10 + (s.charAt(i) - '0');
            if (num > 255) { // 如果⼤于255了不合法
                return false;
            }
        }
        return true;
    }
}

78.子集

力扣题目链接(opens new window)

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例: 输入: nums = [1,2,3] 输出: [ [3],   [1],   [2],   [1,2,3],   [1,3],   [2,3],   [1,2],   [] ]

#算法公开课

《代码随想录》算法视频公开课 (opens new window)回溯算法解决子集问题,树上节点都是目标集和! | LeetCode:78.子集 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

求子集问题和77.组合 (opens new window)131.分割回文串 (opens new window)又不一样了。

如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!

其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。

那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!

有同学问了,什么时候for可以从0开始呢?

求排列问题的时候,就要从0开始,因为集合是有序的,{1, 2} 和{2, 1}是两个集合,排列问题我们后续的文章就会讲到的。

以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:

78.子集

从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合

#回溯三部曲

  • 递归函数参数

全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)

递归函数参数在上面讲到了,需要startIndex。

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {

递归终止条件

从图中可以看出:

78.子集

剩余集合为空的时候,就是叶子节点。

那么什么时候剩余集合为空呢?

就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:

if (startIndex >= nums.size()) {
    return;
}

其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了

  • 单层搜索逻辑

求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树

题解: 这个题让我莫名的思考了很久,其实没那么复杂,之前总是判断是否是结尾才把path添加到result中,其实这个题需要遍历所有的可能,每一个path的组合都需要添加。

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> subsets(int[] nums) {
        callTraverse(nums,0,nums.length);
        return result;
    }

    private void callTraverse(int[] nums, int startindex, int size){
        result.add(new ArrayList(path));
        if(startindex >= size){
            return;
        }
        for(int i = startindex;i < size; i++){
            path.add(nums[i]);
            callTraverse(nums, i+1,size);
            path.removeLast();
        }
    }
}

90.子集II

力扣题目链接(opens new window)

给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:

  • 输入: [1,2,2]
  • 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]

#算法公开课

《代码随想录》算法视频公开课 (opens new window)回溯算法解决子集问题,如何去重?| LeetCode:90.子集II (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

做本题之前一定要先做78.子集 (opens new window)

这道题目和78.子集 (opens new window)区别就是集合里有重复元素了,而且求取的子集要去重。

那么关于回溯算法中的去重问题,40.组合总和II (opens new window)中已经详细讲解过了,和本题是一个套路

剧透一下,后期要讲解的排列问题里去重也是这个套路,所以理解“树层去重”和“树枝去重”非常重要

用示例中的[1, 2, 2] 来举例,如图所示: (注意去重需要先对集合排序

90.子集II

从图中可以看出,同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集!

本题就是其实就是回溯算法:求子集问题! (opens new window)的基础上加上了去重,去重我们在回溯算法:求组合总和(三) (opens new window)也讲过了,所以我就直接给出代码了:

题解: 这个题还是用到重点是如何不出现重复组合,还是要记住used数组的使用和方法。

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    boolean used[];
    public List<List<Integer>> subsetsWithDup(int[] nums) {
        used = new boolean[nums.length];
        Arrays.fill(used,false);
        Arrays.sort(nums);
        callTraverse(nums, 0, nums.length);
        return result;
    }
    private void callTraverse(int[] nums, int start, int size){
        result.add(new ArrayList(path));
        if(start >= size){
            return;
        }
        for(int i = start; i < size; i++){
            if(i > 0 && nums[i] == nums[i-1] && used[i-1] == false){
                continue;
            }
            path.add(nums[i]);
            used[i] = true;
            callTraverse(nums, i+1,size);
            used[i] = false;
            path.removeLast();
        }
    }
}

当然这还有一个不加used数组的办法,直接跳过当前数层使用过的元素。

class Solution {

  List<List<Integer>> res = new ArrayList<>();
  LinkedList<Integer> path = new LinkedList<>();
  
  public List<List<Integer>> subsetsWithDup( int[] nums ) {
    Arrays.sort( nums );
    subsetsWithDupHelper( nums, 0 );
    return res;
  }


  private void subsetsWithDupHelper( int[] nums, int start ) {
    res.add( new ArrayList<>( path ) );

    for ( int i = start; i < nums.length; i++ ) {
        // 跳过当前树层使用过的、相同的元素
      if ( i > start && nums[i - 1] == nums[i] ) {
        continue;
      }
      path.add( nums[i] );
      subsetsWithDupHelper( nums, i + 1 );
      path.removeLast();
    }
  }

}
#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值