【深度学习】基于LSTM时间序列的股票价格预测_myaijarvis的博客-CSDN博客_lstm预测股价
股票数据
链接:https://pan.baidu.com/s/1rUFUOTPV9JzwZwiIUFtyXw?pwd=1166
提取码:1166
--来自百度网盘超级会员V8的分享
000001SZ_10Y.csv
import numpy as np import tushare as t1 import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout, GRU from tensorflow.keras.optimizers import SGD # 可以忽略警告错误 #st=StandardScaler() #t1.set_token('8fa17c450ce70d9d2997013997afaf7502c643095e3f3ebfe1c31525') #ts = t1.pro_api() def data_set(dataset, lookback): """ :param dataset: ndarray :param lookback: 单个序列的长度 :return: """ dataX, dataY = [], [] for i in range(0, len(dataset) - lookback - 1): temp = dataset[i: i + lookback] # 前 lookback步 dataX.append(temp) dataY.append(dataset[i + lookback]) # 第 lookback步 return np.array(dataX), np.array(dataY) def plot_predictions(test_result, predict_restult): """ test_result: 真实值 predict_result: 预测值 """ plt.plot(test_result, color='red', label='test') plt.plot(predict_restult, color='blue', label="prdict") plt.xlabel("Time") plt.ylabel("Close Price") plt.legend() # 给图加上图例 plt.show() # Press the green button in the gutter to run the script. if __name__ == '__main__': data = pd.read_csv('000001SZ_10Y.CSV') df = pd.DataFrame(data,columns=['trade_date','close']) df.head(5) print(df) plt.plot(df['trade_date'], df['close']) plt.show() dataset = df["close"].values print(dataset) dataset_st = st.fit_transform(X=dataset.reshape(-1, 1)) print(dataset_st) print(dataset_st.shape) train_size = int(len(dataset_st) * 0.7) test_size = int(len(dataset_st)) - train_size print(train_size) print(test_size) train, test = dataset_st[0:train_size], dataset_st[train_size:] print(train.shape) lookback = 2 trainX, trainY = data_set(train, lookback) testX, testY = data_set(test, lookback) print(trainX.shape) print(trainY.shape) print(testX.shape) model = Sequential() # LSTM 第一层 model.add(LSTM(128, return_sequences=True, # 是返回输出序列中的最后一个输出,还是全部序列True。 input_shape=(trainX.shape[1], 1))) # (sequence_length, features) model.add(Dropout(0.2)) # LSTM 第二层 model.add(LSTM(128, return_sequences=True)) model.add(Dropout(0.2)) # LSTM 第三层 model.add(LSTM(128)) model.add(Dropout(0.2)) # Dense层 model.add(Dense(units=1)) # 模型编译 model.compile(optimizer='rmsprop', loss='mse') # 模型训练 model.fit(trainX, trainY, epochs=20, batch_size=32) pred_st = model.predict(testX) pred = st.inverse_transform(pred_st) # 进行反归一化 testY2 = st.inverse_transform(testY) # 进行反归一化 因为前面进行了归一化 plot_predictions(testY2, pred) # 画出图像 # See PyCharm help at https://www.jetbrains.com/help/pycharm/