用pytorch实现AlexNet

本文介绍了AlexNet经典神经网络模型,由AlexKrizhevsky等人在2012年提出,基于深度卷积神经网络(CNN),用于ImageNet图像分类。代码展示了如何用PyTorch实现AlexNet及其结构,包括卷积层、池化层和全连接层。
摘要由CSDN通过智能技术生成

AlexNet经典网络由Alex Krizhevsky、Hinton等人在2012年提出,发表在NIPS,论文名为《ImageNet Classification with Deep Convolutional Neural Networks》,论文见:http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf ,论文中的网络结构截图如下:

 

 

import torch
import torch.nn as nn


# 定义AlexNet模型
class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),

            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),

            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),

            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),

            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2)
        )
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x


# 创建AlexNet模型实例
model = AlexNet()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值