百度×科赛 PaddlePaddle AI 大赛开赛啦

转载 2017年12月29日 00:00:00

0?wx_fmt=gif&wxfrom=5&wx_lazy=1

2017年12月28日,百度 PaddlePaddle AI 大赛正式开赛了!


在上篇「百度和科赛,想让AI与你更近一些」中曾提到,PaddlePaddle AI 大赛“希望参赛选手使用PaddlePaddle深度学习框架、利用BROAD数据集、利用K-Lab,着手解决一些行业中的真实问题,从而让AI真正应用于行业、服务于行业。”


本次大赛,我们将目光放在这样一个行业——电视综艺。


在电视综艺的拍摄录制过程中,往往会有十几、二十多台摄像机同时拍摄,比方每两台或更多摄像机多机位跟拍一位艺人。而往往一次拍摄的时间较长,所以会产生大量的视频素材,因此通常在后期过程中,剪辑工作非常辛苦且枯燥。


一般这些视频素材会经历两个剪辑过程——先对所有的视频素材进行初剪,去掉明显不可用的镜头,之后再精剪。但不论在哪步,都需要导演和剪辑师们在剪辑的过程中时刻判断哪些是需要留下的、甚至未来会产生良好观众效果的镜头。固然他们会在这方面的判断上很有经验,但当素材的量很大时,或当需要在同一个时刻的几个镜头中作抉择时,如果这时有个声音可以给他们提供一些小小建议的话,那会不会对他们有所帮助呢?


因此我们设想,如果能通过算法,在素材导入的阶段就对素材进行自动标记,标记出那些将来会有一定概率成为观众眼中的“精彩片段”的时间段,那或许不仅可以成为初剪的参考、提高剪辑的效率,而且,往往毕竟每位导演都会结合脚本与自己的考量、经验来决定留下的镜头,因此这些标记出的“潜力精彩片段”或许也能作为导演从观众角度考量的参考之一,这样的话,在后期过程中便预知了“观众反馈”,从而甚至可以保障整个后期的效率与质量。


电视综艺的工作者们如此辛苦,AI是不是可以让他们轻松一些,睡得更充足些呢?


之所以现在这样的AI助力变为了可能,因为百度的BROAD数据集为我们提供了很棒的素材——1500个来自爱奇艺的电视综艺视频,总共约1200个小时,且视频已都直接转换为了视频帧的图片特征序列,但也都提供了观看链接;其中每个视频都被仔细地标注了“精彩片段”的时间戳,标记出了共18000段、约750小时的“精彩片段”——这是全球首创的公开精彩片段标注数据集。[1]


有了这样的数据,前面的设想便成为了一个深度学习问题——通过学习长视频的图像等信息(即视频帧的图片特征序列),检测其中精彩片段的位置,从而训练检测模型,从而可实现:给定任意一个新的长视频(如视频素材),输出其中精彩片段的时间戳。


但是,若要真正实现直接在素材中标记出“潜力精彩片段”的话,还得一步步来。我们这次先从“在已成片的综艺视频中标记出精彩片段”开始吧。即,我们希望选手们通过训练学习视频帧的图片特征序列得到的模型,对于给定任意一个新的长视频(还未被标注过精彩片段的电视综艺视频),大约时长30分钟到2小时,输出其中精彩片段的时间戳,其中精彩片段指精准切分出一段节目或情节的短视频,长约1到5分钟。


但对于深度学习问题来说,虽然百度的那篇研究报告中提到,随着训练数据的增多,深度学习模型的准确率会有可预期的提高。[2] 但数据量的越来越多往往会导致需要越来越长的训练时间,因此在这次大赛中我们也想做一些这方面的尝试,看若仅利用一小部分的数据,在一个不那么长的单次训练时间内,是否有可能得到一个比较准确的模型。



比赛阶段


本次大赛分为两个阶段。


第一比赛阶段

2017年12月28日0:00:00--2018年2月4日23:59:59


此阶段中,K-Lab使用百度云计算优化型CPU,4核8GB内存。K-Lab单次运行时长为3小时。


训练

使用已抽取的约10%的视频数据训练集(共124个视频),学习视频帧的图片特征序列数据,在K-Lab中训练精彩片段检测模型。


验证

使用验证集的数据与开放的测评脚本K-Lab,评价训练好的模型在验证集视频上的预测结果。


输出结果

对测试集中的视频使用训练好的模型,得出预测结果,通过K-Lab上传结果到测评系统得到评价分数。


2018年1月14日23:59:59,第一比赛阶段中期截止,分数排名第一的队伍获得鼓励奖。


2018年1月15日0:00:00起,用户通过K-Lab上传结果的同时也需上传K-Lab notebook报告。


2018年2月4日23:59:59,第一比赛阶段截止,且报名截止。选拔使用了PaddlePaddle训练模型且上传了K-Lab notebook报告的队伍中,分数前50名的队伍晋级到第二比赛阶段。


第二比赛阶段

2018年2月9日0:00:00--2018年3月15日23:59:59


此阶段中,K-Lab的配置为GPU(百度免费提供的英伟达深度学习开发卡,CPU:6核40g),单次运行时长为3小时。选手无需任何申请或安装,直接打开K-Lab在其中使用即可。


训练

选手必须使用PaddlePaddle训练模型,使用全量视频数据训练集(共1262个视频),学习视频帧的图片特征序列数据,在K-Lab中训练精彩片段检测模型。


验证

使用验证集的所有数据与开放的测评脚本K-Lab,评价训练好的模型在验证集视频上的预测结果。


输出结果

对测试集中的所有视频使用训练好的模型,得出预测结果,通过K-Lab上传结果与K-Lab notebook报告到测评系统得到评价分数。


2018年2月25日23:59:59,第二比赛阶段中期截止,分数排名第一的队伍获得鼓励奖。


2018年3月15日23:59:59,第二比赛阶段截止,百度专家对分数排名前10名的队伍评审K-Lab notebook报告,得出:

一等奖:1支团队,50000元

二等奖:2支团队,20000元

三等奖:3支团队,3000元


关于数据、测评、提交等更多详细说明,请点击「阅读原文」或扫描大赛海报二维码转到PaddlePaddle AI 大赛主页!


640?wx_fmt=jpeg


我们诚邀身处世界各地的你来报名参赛!不论是学者、人工智能从业者、本科生,还是科研机构、创业团队、学生社团,请都参与进来。希望这次大赛不仅能汇聚到最优秀的AI人才、解决重要的问题,也能为学生提供一次难得的学习机会,体验着手新题、难题的过程,对自己的实践技术、理论基础也可以查漏补缺。


我们想让AI与你更近一些,不仅百度AI在越来越懂你,也希望真正有难度有挑战的AI问题能让更多高手的你来参与解决、或让正在学习的你来参与体验,更希望,AI能应用在更多行业、服务于每个你。


推荐阅读:「百度和科赛,想让AI与你更近一些」


Reference

[1]https://mp.weixin.qq.com/s/aEgl7R7m5-u8sgFiv8C4Tw?scene=25#wechat_redirect

[2] https://arxiv.org/abs/1712.00409



PaddlePaddle


百度深度学习平台PaddlePaddle——是大规模并行分布式深度学习框架,易学易用、高效灵活,支持海量图像识别分类、机器翻译和自动驾驶等多个领域的业务需求,现已全面开源。


PaddlePaddle的性能表现及产品优势:

  • 可伸缩性:支持多种集群框架:MPI,Kubernetes,支持GPU集群资源动态分配。(Paddle官方支持Kubernetes)

  • 高效性:速度快,RNN比主流深度学习框架快1~2倍、显存占用更小 高效的多显卡环形通信与高效的多机PServer通信。支持数十亿参数的超大规模稀疏训练

  • 易用性:RNN 采用无padding计算,seq2seq 模型通过非常简单的配置,可以直接训练和生成 Tensorflow的多显卡多机训练需要使用者自定义如何通信,PaddlePaddle单机代码和多机多卡代码完全一致,无痛从单机训练透明伸展到大规模集群训练

  • 支持MKL-DNN:Intel 7月加入开源贡献,PaddlePaddle成为第一个官方支持MKL-DNN的深度学习框架


PaddlePaddle的发展历程/迭代信息:

  • 2013年成立并开始服务百度内多项核心业务

  • 2016年9月宣布开源

  • 2017年2月PaddlePaddle on Kubernetes 发布,是首个支持Kubernetes的深度学习平台

  • 2017年3月New API PaddlePaddle V2发布,大幅精简了PaddlePaddle的代码量

  • 2017年5月PaddlePaddle Cloud 正式发布

  • 2017年7月PaddlePaddle Cloud & 国家工程实验室共同建立深度学习技术及应用国家工程实验室 (dlnel.org)

  • 2017年11月发布新一代深度学习框架Paddle Paddle Fluid、新一代弹性深度学习框架PaddlePaddle EDL ( elastic deep learning )



科赛 Kesci


科赛是个聚合数据人才和行业问题的在线开放创新平台,现已有数万名专业数据科学家与AI人才加入。


通过为30余家互联网、金融等主流企业客户(如平安、联通、华为、携程、拍拍贷等)提供在算法、(数据/AI)创新应用、新型人才招募上的解决方案,持续吸引优质人才在科赛平台上在线设计并提交5000余份数据算法应用、数据产品创新方案等,鼓励开源了1000余个主流算法模块、5000G真实生产级数据集资源。


基于科赛打造的开放创新平台模式,帮助极大降低企业AI创新成本、加速应用落地,同时更好赋能AI人才进行创新与学习,在实践中更新知识体系、迭代技术能力,满足未来各个行业对数据人才、AI人才的需求。


为了提高数据工作者的工作效率,科赛团队于今年推出了国内首款在线数据工作平台K-Lab。秒级启动,零安装、零维护,集成了Python、R两种主流语言生态的丰富功能,已内置了100多种各语言主流数据分析、机器学习、深度学习工具包,如Numpy, Pandas, Tensorflow, Theano与PaddlePaddle,等等。轻松调用,一键部署环境、标准化代码,还配以强大的云计算资源,能为商业智能、数据分析、机器学习、深度学习等主流分析模块在云端的运行计算提供支撑。因此用户可直接加载科赛上的任意数据,立即开始不论数据分析还是深度学习,可极大提高学习与工作效率。


现在,不仅PaddlePaddle可在K-Lab中直接调用,数百GB的BROAD数据集也可在K-Lab中直接挂载,在本次AI大赛的第二比赛阶段中,选手在K-Lab将可直接使用来自英伟达深度学习开发卡的GPU算力。

 

极客学院


极客学院是目前国内领先的IT职业教育平台,有IT技术课程近3000门,13000多个课时。极客学院与百度合作,推出国内首个开源框架PaddlePaddle完整培训课程!集合了百度的搜索、图像识别等多领域的技术方向。




0?wx_fmt=gif

看到这里 不妨打开浏览器 输入kesci.com

报名大赛   All In AI


科赛Kesci.com是聚合数据人才和行业问题的在线社区。打造的K-Lab在线数据分析协作平台,为数据工作者的学习与工作带来全新的体验。

640?wx_fmt=jpeg

「阅读原文」,抢占AI赛道

PaddlePaddle(v0.10.0)源码方式安装

0、前言   PaddlePaddle,百度旗下深度学习开源平台。   2016年9月27日,百度宣布其全新的深度学习开源平台PaddlePaddle在开源社区Github及百度大脑平台开...
  • qq_26819733
  • qq_26819733
  • 2017-07-17 20:28:23
  • 4766

paddlepaddle初步印象

从其官网整理了一些资料如下:1、基本概念基本使用概念PaddlePaddle是源于百度的一个深度学习平台。PaddlePaddle为深度学习研究人员提供了丰富的API,可以轻松地完成神经网络配置,模型...
  • u010255642
  • u010255642
  • 2017-07-20 08:48:55
  • 4504

百度×科赛 PaddlePaddle AI 大赛开赛啦

2017年12月28日,百度 PaddlePaddle AI 大赛正式开赛了!在上篇「百度和科赛,想让AI与你更近一些」中曾提到,PaddlePaddle AI 大赛“希望参赛选手使用PaddlePa...
  • meyh0x5vDTk48P2
  • meyh0x5vDTk48P2
  • 2017-12-29 00:00:00
  • 1576

百度 AI 再发福利!不仅有实战营,还有手把手教学的“深度学习公开课”

点击上方“CSDN”,选择“置顶公众号”关键时刻,第一时间送达!百度 AI 开发者实战营第二季强势回归,你期待的技术干货、成功案例与大咖演讲都将如期而至,甚至还有你想不到的超级课堂……为了满足开发者的...
  • csdnnews
  • csdnnews
  • 2018-04-11 00:00:00
  • 69

百度AI开发者实战营,百度AI开发平台,PaddlePaddle深度学习架构,资料汇总

理解与交互技术(Understanding and Interaction Technology) http://ai.baidu.com/tech/unit 计算机视觉解决方案 http://...
  • NBE999
  • NBE999
  • 2017-10-28 11:36:09
  • 319

科赛网 魔镜杯“风控算法比赛”赛后总结

1.问题描述 从平均400个数据维度来评估当前用户的信用状态,给每个借款人打出当前状态的信用分。在此基础上,再结合新发标的信息,打出对于每个标的6个月内逾期率的预测,为投资人提供了关键的决策依据,促...
  • u010414589
  • u010414589
  • 2016-04-20 16:20:16
  • 3880

【人工智能】AI竞赛,到底有什么价值?

撰稿:欧应刚 | 小编:小葱2017年12月24日,CCF第五届“大数据与计算智能大赛(Big Data & Computing Intelligence Contest, BDCI)”在江苏常熟落下...
  • Z1Y492Vn3ZYD9et3B06
  • Z1Y492Vn3ZYD9et3B06
  • 2017-12-27 00:00:00
  • 848

把脉百度AI,“三得”、“三失”与“三策”

每一个企业级的人 都置顶了 中国软件网 中国软件网 为你带来最新鲜的行业干货 本文作者:欧应刚 邮箱:oyg@soft6.com 微信:oyg0001 ...
  • Z1Y492Vn3ZYD9et3B06
  • Z1Y492Vn3ZYD9et3B06
  • 2017-12-01 00:00:00
  • 169

智慧航空AI大赛-阿里云算法大赛总结(源码分享)

向AI转型的程序员都关注了这个号???大数据挖掘DT数据分析  公众号: datadw总结一下新的教训1.由于都是NP难题,获得最优解用常规的方法非常困难,对于不是算法科班出身的人来说,首先应该到网络...
  • meyh0x5vDTk48P2
  • meyh0x5vDTk48P2
  • 2018-03-03 00:00:00
  • 502

百度深度学习平台PaddlePaddle的深度学习入门教程

转自: 全球人工智能微信公众号GitHub: https://github.com/PaddlePaddle/book新手入门 fit_a_line: https://github.com/Pad...
  • Forrest_Z
  • Forrest_Z
  • 2017-02-13 08:40:10
  • 6395
收藏助手
不良信息举报
您举报文章:百度×科赛 PaddlePaddle AI 大赛开赛啦
举报原因:
原因补充:

(最多只允许输入30个字)