大数据挖掘DT数据分析

手把手带你玩各种数据分析案例,涵盖数据分析工具使用,数据挖掘算法原理与案例,深度学习,机器学习,R语言,Python编程,爬虫。...

Tensorflow:基于LSTM轻松生成各种古诗

0?wx_fmt=gif&wxfrom=5&wx_lazy=1

 向AI转型的程序员都关注了这个号???


大数据挖掘DT数据分析  公众号: datadw


本文代码在公众号 datadw 里 回复 古诗  即可获取。



RNN不像传统的神经网络-它们的输出输出是固定的,而RNN允许我们输入输出向量序列。RNN是为了对序列数据进行建模而产生的。

样本序列性:样本间存在顺序关系,每个样本和它之前的样本存在关联。比如说,在文本中,一个词和它前面的词是有关联的;在气象数据中,一天的气温和前几天的气温是有关联的。

例如本帖要使用RNN生成古诗,你给它输入一堆古诗词,它会学着生成和前面相关联的字词。如果你给它输入一堆姓名,它会学着生成姓名;给它输入一堆古典乐/歌词,它会学着生成古典乐/歌词,甚至可以给它输入源代码。

关于RNN:

  • TensorFlow练习3: RNN, Recurrent Neural Networks

  • http://karpathy.github.io/2015/05/21/rnn-effectiveness/

本帖代码移植自char-rnn,https://github.com/karpathy/char-rnn

它是基于Torch的洋文模型,稍加修改即可应用于中文。char-rnn使用文本文件做为输入、训练RNN模型,然后使用它生成和训练数据类似的文本。

使用的数据集:全唐诗(43030首):

本文代码在公众号 datadw 里 回复 古诗  即可获取。



模型生成

首先我们要训练好模型。这里采用的是2层的LSTM框架,每层有128个隐藏层节点,batch_size设为64。训练数据来源于全唐诗(可在上面百度云资源分享当中找到)。特别注意到的一点是这里每训练完一次就对训练数据做shuffle。 
源代码如下:


0?wx_fmt=png


使用该代码会将训练好的模型参数保存在 “model” 文件夹下。经过100个epoch之后,平均loss会降到2.6左右。训练好的模型在公众号 datadw 里 回复 古诗  即可获取。

生成古诗

使用训练好的模型可以轻松生成各种古诗。 
下面就是几个例子:

0?wx_fmt=png

0?wx_fmt=png

生成藏头诗

上代码:

0?wx_fmt=png


最后从函数接口可以看到,除了可以自己定义诗的头外,还可以定义是五言绝句还是七言绝句。 
来看几个五言绝句的例子:

0?wx_fmt=png

0?wx_fmt=png

再来看几个七言绝句的例子:

0?wx_fmt=png

0?wx_fmt=png

那么是不是可以用它来写情诗呢? 
当然可以啦!

0?wx_fmt=png

via http://blog.csdn.net/u014232627/article/details/71189078


人工智能大数据与深度学习

搜索添加微信公众号:weic2c

640?wx_fmt=png

长按图片,识别二维码,点关注



大数据挖掘DT数据分析

搜索添加微信公众号:datadw


教你机器学习,教你数据挖掘

640?wx_fmt=jpeg

长按图片,识别二维码,点关注





阅读更多
想对作者说点什么? 我来说一句

tensorflow训练一个会写诗的模块

2017年10月17日 41.68MB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭