深度学习知识点总结2.0

  1. M-P神经元相当于神经网络发展的第一个细胞。

  2. 感知机是第一个具有基本功能的神经网络工具,只具有一层功能神经元。

  3. 多层前馈神经网是现代神经网络原始模型,具有多层功能神经元,一般采用BP算法进行训练。

  4. 小批梯度下降训练算法是梯度下降算法中的“中庸之道”

  5. 分布式表征是神经网络发展历程中的一个重要思想

  6. CNN中的权值共享就是一个特征映射(即一组神经元)共享一个卷积核和一个偏置,通俗来讲,卷积核就是一组网络权值,而且几个卷积核就可以得到几个特征映射平面。

  7. 几个卷积核就对应几组参数,并可以得到几个特征映射,而卷积核就是神经元之间的连接权重,也就是卷积神经网络中需要训练的参数。

  8. 卷积最后得到的矩阵维度=图像矩阵维数-卷积核矩阵维数+1

  9. 池化操作可以把原始矩阵维度减少到原来的1/n。

  10. 卷积神经网络的核心思想是稀疏连接和权重共享,在减少网络参数的个数的同时,获得图像特征位移,以及尺度的不变性。

  11. GAN主要由生成器G(generator)和判别器D(discriminator)构成。

  12. 生成器G的任务是从训练数据中生成具有相同分布的样本数据(samples),判别器D的任务是判断输入是真实数据还是生成数据。

  13. GAN可以预测的状态规划行动、生成缺失的数据和标签、提升图像分辨率、多模态学习,但原始GAN模型的训练缓慢,不可控问题明显。

  14. ACGAN可以完成带标签的监督学习。

  15. 生成器和判别器的训练目标函数是一个极大极小博弈问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mez_Blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值