全网最新!| 深度学习发展史(1943-2024编年体)(The History of Deep Learning)

深度学习是人工智能领域的一个重要分支,它在图像识别、语音识别、自然语言处理等方面取得了显著的进展。

学习任一门知识都应该先从其历史开始,把握了历史,也就抓住了现在与未来 。

那么深度学习到底是经历了一段怎样的发展过程呢?下面我们就来了解一下深度学习发展史。

   1940s-1950s:早期神经网络概念

1943年,Warren McCulloch和Walter Pitts发表论文“A logical calculus of the ideas immanent in nervous activity”(神经活动中内在思想的逻辑演算),建立了神经网络和数学模型,称为MCP模型。奠定了神经网络和数学模型的基础。

MCP当时是希望能够用计算机来模拟人的神经元反应的过程,该模型将神经元简化为了三个过程:输入信号线性加权,求和,非线性激活(阈值法)。如下图所示:

图片

图:MCP模型

1949年,Donald Hebb提出了Hebbian学习规则,该规则表明,如果神经元A在接收到神经元B的输入后,持续发放输出,那么神经元A与神经元B之间的连接强度将增强:

Hebb学习规则与“条件反射”机理一致,并且已经得到了神经细胞学说的证实。Hebbian学习规则为神经元连接强度的学习机制提供了理论支持。

   1950s-1960s:感知机和早期模型

1958年,计算机科学家Frank Rosenblatt提出了两层神经元组成的神经网络,称之为感知器(Perceptrons),使用MCP模型对输入的多维数据进行二分类,且能够使用梯度下降法从训练样本中自动学习更新权值。

1969年,Marvin Minsky和Seymour Papert在他们的书《Perceptrons》中指出感知器本质上是一种线性模型,只能处理线性分类问题,就连最简单的XOR(异或)问题都无法正确分类。

图片

图:异或(XOR)问题:没有一条直线能将绿点和红点分开

   1980s-1990s:多层感知机和反向传播

1985年,Geoffrey Hinton等人发表论文A learning algorithm for boltzmann machines,提出了受限玻尔兹曼机 (RBM)。一种用于无监督学习的随机神经网络。可用于特征提取、降维。后来成为深度信念网络的组成块进而流行。

1986年,Geoffrey Hinton 发明了适用于多层感知器(MLP)的BP(Backpropagation)算法,并采用Sigmoid进行非线性映射,有效解决了非线性分类和训练的问题。该方法引起了神经网络的第二次热潮。

1989年,Yann LeCun等人发表论文Backpropagation Applied to Handwritten Zip Code Recognition(反向传播应用于手写邮政编码识别),使用BP算法训练卷积神经网络(CNN)用于手写数字识别。

《数学杰作:探险家的后续编年史》是一本介绍数学领域中伟大作品的书籍。本书由多位数学家和探险家合作编写,旨在向读者呈现数学领域中一些重要的发现和突破。 这本书的内容囊括了数学领域中许多重要的数学定理和研究成果。从欧几里得几何学到微积分,从代数到数论,从概率论到统计学,本书全面地展示了数学的广泛应用和深远影响。 书中详细介绍了一些著名数学家的生平、主要发现和贡献。读者可以了解到他们在数学领域的研究思路和方法,以及他们所面临的困难和挑战。这些故事不仅使读者更深入地了解数学的发展历程,还激发了对数学的兴趣和探索的欲望。 此外,本书还介绍了一些数学在实际应用中的重要作用。例如,数学在天文学中的应用帮助科学家研究宇宙的形态和运动规律;数学在密码学中的应用保护着我们的隐私;数学在金融领域中的应用帮助我们更好地理解经济的变化等等。这些实际应用的例子向读者展示了数学的实用性和价值。 《数学杰作:探险家的后续编年史》是一本既富有深度又有趣味性的数学读物。它不仅适合对数学有浓厚兴趣的专业数学家和学生阅读,也适合一般读者了解数学领域的发展和应用。阅读这本书,我们可以更好地理解数学的美妙、智慧和力量,对数学有更深入的认识和理解。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值