深度学习是人工智能领域的一个重要分支,它在图像识别、语音识别、自然语言处理等方面取得了显著的进展。
学习任一门知识都应该先从其历史开始,把握了历史,也就抓住了现在与未来 。
那么深度学习到底是经历了一段怎样的发展过程呢?下面我们就来了解一下深度学习发展史。
1940s-1950s:早期神经网络概念
1943年,Warren McCulloch和Walter Pitts发表论文“A logical calculus of the ideas immanent in nervous activity”(神经活动中内在思想的逻辑演算),建立了神经网络和数学模型,称为MCP模型。奠定了神经网络和数学模型的基础。
MCP当时是希望能够用计算机来模拟人的神经元反应的过程,该模型将神经元简化为了三个过程:输入信号线性加权,求和,非线性激活(阈值法)。如下图所示:
图:MCP模型
1949年,Donald Hebb提出了Hebbian学习规则,该规则表明,如果神经元A在接收到神经元B的输入后,持续发放输出,那么神经元A与神经元B之间的连接强度将增强:
Hebb学习规则与“条件反射”机理一致,并且已经得到了神经细胞学说的证实。Hebbian学习规则为神经元连接强度的学习机制提供了理论支持。
1950s-1960s:感知机和早期模型
1958年,计算机科学家Frank Rosenblatt提出了两层神经元组成的神经网络,称之为感知器(Perceptrons),使用MCP模型对输入的多维数据进行二分类,且能够使用梯度下降法从训练样本中自动学习更新权值。
1969年,Marvin Minsky和Seymour Papert在他们的书《Perceptrons》中指出感知器本质上是一种线性模型,只能处理线性分类问题,就连最简单的XOR(异或)问题都无法正确分类。
图:异或(XOR)问题:没有一条直线能将绿点和红点分开
1980s-1990s:多层感知机和反向传播
1985年,Geoffrey Hinton等人发表论文A learning algorithm for boltzmann machines,提出了受限玻尔兹曼机 (RBM)。一种用于无监督学习的随机神经网络。可用于特征提取、降维。后来成为深度信念网络的组成块进而流行。
1986年,Geoffrey Hinton 发明了适用于多层感知器(MLP)的BP(Backpropagation)算法,并采用Sigmoid进行非线性映射,有效解决了非线性分类和训练的问题。该方法引起了神经网络的第二次热潮。
1989年,Yann LeCun等人发表论文Backpropagation Applied to Handwritten Zip Code Recognition(反向传播应用于手写邮政编码识别),使用BP算法训练卷积神经网络(CNN)用于手写数字识别。