Java递归回溯思想解决八皇后问题

一、八皇后问题介绍及算法思路分析:

1.八皇后问题,是一个古老而著名的问题,是递归回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出在8*8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列、或同一斜线上,问有多少中摆法。

2.八皇后问题算法思路:
(1)第一个皇后放在第一行第一列
(2)第二个皇后放在第二行第一列,然后判断是否OK,如果不OK,继续放在这行的第二列、第三列、依次把所有的列都放完,找到一个合适的位置
(3)继续第三个皇后,还是第一列、第二列…,直到第8个皇后也能放在一个不冲突的位置,算是找到一个正确解
(4)当得到一个正确解的时候,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放在第一行第一列的所有解全部得到
(5)然后回头将第一个皇后放在第一行第二列,后面继续执行1,2,3,4的步骤

二、代码实现:

说明:理论上我们应该创建一个二维数组来表示棋盘,但是实际上我们可以使用一个一维数组来解决问题,array[8]={0,4,7, 5 ,2, 6, 1, 3 },array数组的下标+1代表棋盘的行数和第几个皇后,数组中的值+1代表第几列,例如array[8]={0,4,7, 5 ,2, 6, 1, 3 }中0这个数,代表第0+1个皇后在第0+1行第0+1列,4这个数,代表第1+1个皇后在第1+1行第4+1列…


public class Queue8 {

    // 定义一个max表示共有多少个皇后
    int max = 8;
    // 定义数组array,保存皇后放置位置的结果,比如:arr={0,4,7,5,2,6,1,3}
    int[] array = new int[max];
    static int count = 0;

    public static void main(String[] args) {
        // 测试一把,8皇后是否正确
        Queue8 queue8 = new Queue8();
        queue8.check(0);//递归从0开始到8结束
        System.out.printf("一共有%d解法\n", count);

    }

    // 编写一个方法放置第n个皇后
    // 特别注意:check是每次递归时,进入到check中都有一次for(int i=0;i<max;i++),因此会有回溯
    private void check(int n) {
        if (n == max) {// n=8,其实八个皇后就已然放好了
            print();
            return;
        }
        // 一次放入皇后并依次判断是否冲突
        for (int i = 0; i < max; i++) {
            // 先把当前这个皇后n,放到该行的第一列
            array[n] = i;
            // 判断当放置第n个皇后到i列时,是否冲突
            if (judge(n)) {// 说明不冲突
                // 接着放n+1个皇后,即开始递归
                check(n + 1);
            }
            // 如果冲突就继续执行array[n]=i;即将第n个皇后放置在本行的后一个位置
        }
    }

    // 查看当我们放置第n个皇后,就去检测该皇后是否和前面已经摆放的皇后冲突
    /**
     * @param n 表示第n个皇后
     * @return
     */
    private boolean judge(int n) {
        for (int i = 0; i < n; i++) {
            // 说明:
            // 1.array[i] == array[n]表示判断第n个皇后是否和前面n-1个皇后在同一列
            // 2.Math.abs(n - i) == Math.abs(array[n] - array[i])表示判断第n个皇后是否和第i个皇后是否在同一个斜线
            // n=1 放置第2列1 n=1 array[n]=1;
            // Math.abs(1-0)=1, Math.abs(array[n] - array[i])=Math.abs(1-0)=1;
            // 3.判断是否在同一行是不需要的,因为n本身每次都在递增
            if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {
                return false;
            }
        }
        return true;
    }

    // 写一个方法,可以将皇后摆放的位置打印出来
    private void print() {
        count++;
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i] + " ");
        }

        System.out.println();
    }

}

三、代码测试:

在这里插入图片描述
在这里插入图片描述
一共有92中解法,截图不全
我们随机测试一个结果看看是否正确,列如最后一个:7 3 0 2 5 1 6 4
在这里插入图片描述
测试结果如上图,我们发现是没有问题的。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值