Python分析电商销售数据

python数据分析作业记录

本文原文件通过百度网盘分享
链接:https://pan.baidu.com/s/1XeBiANMxgLxQu7Qf9ejomg
提取码:evzt

作业要求
1、读取dataset1.xlsx中数据,将ShipDate,OrderDate列转换为时间格式
2、找出发货时间早于下单日期的记录,并删除发货时间早于下单日期的记录,且在原数据上进行修改。
3、分别取出订单日期的年、月、季,生成新的DataFrame,并导出
4、按照年份计算每年的销售总额

# 读取dataset1.xlsx中sheet2的数据
import pandas as pd

data = pd.read_excel('./dataset1.xlsx', sheet_name='Sheet2');
# print(data)
print(data.info())

# 1、将ShipDate,OrderDate列转换为时间格式
data['ShipDate'] = pd.to_datetime(data['ShipDate'])
data['OrderDate'] = pd.to_datetime(data['OrderDate'])
print(data)

# 2、、找出发货时间早于下单日期的记录,并删除发货时间早于下单日期的记录,且在原数据上进行修改。
# print(data[data['ShipDate'] < data['OrderDate']])  # 看看删除前哪一行发货时间早于下单日期
data.drop(index=data[data['ShipDate']<data['OrderDate']].index, inplace=True)
# print(data[data['ShipDate'] < data['OrderDate']])  # 看看删除后哪一行发货时间早于下单日期

# 3、分别取出订单日期的年、月、季,生成新的DataFrame,并导出
data['year'] = data['OrderDate'].dt.year
data['month'] = data['OrderDate'].dt.month
data['quarter'] = data['OrderDate'].dt.to_period('Q')
new_dataFrame = data[['year', 'month', 'quarter']]
print(new_dataFrame)

# 4、按照年份计算每年的销售总额
total = data.groupby(data['OrderDate'].dt.year)['Sales'].sum()
print("每年的销售额:\n", total)

参考案例:
python案例分析之电商销售数据分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值