【GPU(4090)+ubutu20.4+python+pytorch+torchvision+cuda安装】

文章详细介绍了如何删除并重建CUDA版本为11.6的conda虚拟环境,以及如何根据此CUDA版本正确安装pytorch1.13.1、torchvision0.14和torchaudio0.13.1。强调了Python版本与这些库的对应关系,指出不兼容版本可能导致的问题,并提供了创建和激活新环境的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@TOC


因为之前有相应的环境,因版本错误,所以首先彻底删除虚拟环境

第一步:首先退出环境

conda deactivate

第二步:查看虚拟环境列表,此时出现列表的同时还会显示其所在路径

conda env list

第三步:删除环境

conda env remove -p 要删除的虚拟环境路径
创建虚拟环境

第四步:查看cuda版本

nvcc -V
结果:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Fri_Dec_17_18:16:03_PST_2021
Cuda compilation tools, release 11.6, V11.6.55
Build cuda_11.6.r11.6/compiler.30794723_0

我的是11.6

和nvidia-smi的区别是

nvidia-smi查看的是安装在liunx中的最高版本支持12.0,所以11.6是满足自身机器的使用的

非常重要的就是这些对应关系pytorch,torchvision与python版本对应关系

https://blog.csdn.net/WOSHIRENXIN/article/details/127415609?ops_request_misc=&request_id=&biz_id=102&utm_term=conda%20install%20pytorch==1.13.1%20&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-127415609.nonecase&spm=1018.2226.3001.4187

因为cuda版本是11.6,所以pytorch 对应是1.13 torchvision 0.14 python >=3.7  <=3.10 
如果论文中readme中python中3.6版本,只能安装3.7的,3.6版本即使安装后也不能用,也会报错,后期环境还是要换。
简单粗暴就是删掉现有的虚拟环境。

重新走一遍:

  1. 使用conda的清华源创建虚拟环境
conda create -n AP3D python=3.7 -c conda-forge
  1. 激活虚拟环境
conda activate AP3D
  1. 安装对应的cuda,pytorch ,torchvision
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia

可以运行代码了,根据实际需求报错缺什么就安装库函数就可以了。
实验室服务器,包括自己购买的4090服务器版本不对应踩过太多坑,以此作为教程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值