拼多多店铺商品描述中哪些词不能出现?

大家好,我是面兜兜,今天面兜兜给大家有关商品描述中违规词的相关细节问题。

在这里插入图片描述

拼多多商品描述对于店铺后期运营来说真的非常关键,但也是最容易犯错的地方,据悉很多的商家为了让突出商品的特点和独特,通常会选择独特的字眼来描述商品的标题、详情等,而这些字眼,很多的都属于拼多多违规词汇,所以【面兜兜】提醒各位商家小主在发布商品时一定要注意商品的标题、详情中千万不能出现这些独特的字眼,具体如下:

1、最系列

拼多多商品描述中,许多店家为更好的凸显商品的特点,很多时候都会采用“最”这个词,例如:最高档、最便宜、最实惠等,而这个词属于拼多多违规词汇,一定要避免。

2、唯一系

其实任何事情都没有唯一,所以拼多多商品描述中千万不能出现独家原创、唯一设计、唯一渠道、唯一授权等这些类。

3、绝对系

拼多多商品描述中也是仅用绝对这个词,例如:绝对高端、绝对实用、绝对推荐,一定要避开这些绝对词。

4、肯定系

在拼多多商品描述中也是禁止使用肯定系的词,例如:肯定好用、性价比肯定高、肯定好用等。

5、全网独家系

全网独家这类词是不能出现在拼多多商品描述中的,例如:击杀全网、全网廉价、全网假冒商品、全网之首等。

6、最终系

没有商品能保证终极系列,一切没有最终系,要知道一山更比一山高的道理,所以不可以使用终极系列的词,例如:全国级、国家级都能过这类词。

7、价格系

虽说拼多多的商品都比较的实惠,价格很低,即便你觉得你商品的价格是全网最少的,但是也不能说,因为很可能没有最低仅有更低。

8、诱导性

利用一些诱导词去引导客户购买同样是不可行的,例如:假一赔万、跳楼价、特价仅此一天等。
总之,拼多多商品描述不能随便写,有很多的词汇都是不被允许出现的,并且这个描述主要是围绕商品来写的,功能、功效、材质等都允许被夸大,一定要实事求是,内容必须要属实,不然就是在售卖虚假商品了,一旦被平台发现,受惩罚是在所难免的。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值