leetcode 673. 最长递增子序列的个数

这个题是动态规划,重点在于使用两个dp数组,一个记录以当前数组结尾的最长子序列的长度。另一个记录,有多少种到这么长的方式(个数)。
重点是,初始化的边界条件细节的优化

673. 最长递增子序列的个数
给定一个未排序的整数数组,找到最长递增子序列的个数。

示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。

示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。

直接看代码,就懂了,两个dp。
code:

class Solution(object):
    def findNumberOfLIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        n = len(nums)
        if not n: return 0
        dp = [1 for _ in range(n)]  # 子序列长度
        dplen = [1 for _ in range(n)] # 子序列个数
        for i in range(n):
            for j in range(i):
                if nums[j] < nums[i]:
                    if dp[j]+1 > dp[i]:
                        dp[i] = dp[j]+1
                        dplen[i] = dplen[j]
                    elif dp[j]+1 == dp[i]:
                        dplen[i] += dplen[j]
        print(dp)
        print(dplen)
        maxl = max(dp)
        c = 0
        for i, n in enumerate(dp):
            if n==maxl:
                c += dplen[i]
        return c

好了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值