自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 论文阅读笔记《Toward Unified Controllable Text Generation via Regular Expression Instruction》

为解决可控文本生成中现有方法难以适配多约束类型及组合的问题,研究提出正则表达式指令(REI),通过基于指令的机制充分利用正则表达式优势,统一建模词汇、位置、长度等细粒度约束及复杂组合;REI采用类HTML标记语言设计指令(如<mask_i><length=n>),支持两种应用范式——对中型语言模型(如3B参数的FLAN-T5-xl)进行微调、对大型语言模型(如GPT-3.5)进行8-shot少样本上下文学习,且无需修改模型架构或解码逻辑;

2025-10-27 08:51:52 828

原创 论文阅读笔记《Harnessing Multi-Agent Collaboration for Fine-Grained Precise Control in Text Generation》

针对受控文本生成(CTG)领域中传统方法(如小模型主导LLM解码、指令模型难处理细粒度控制)的局限及实际应用中成本、可扩展性、领域知识学习的需求,阿里巴巴团队提出AgentCTG多智能体协作框架,该框架整合文本生成模块(反射机制)、去中心化质量检测模块(反馈池)、自由性能基于自动提示生成模块三大核心模块,并引入投票式、遗传算法式协作机制,可高效处理毒性缓解、情感转换、角色驱动重写三大CTG任务;

2025-10-25 19:49:05 1080

原创 论文阅读笔记《CTGGAN: Controllable Text Generation with Generative Adversarial Network》

为解决传统可控文本生成(CTG)方法的缺陷——微调语言模型(LM)存在“幻觉”和灾难性遗忘、条件语言模型(CLM)需从头训练且依赖定制数据集、解码时方法采样效率低且约束权重静态,研究团队提出CTGGAN模型:以带logits偏差的语言模型(如GPT-2)为生成器(Generator)生成约束文本,以含可学习约束权重组合的判别器(Discriminator)评分并更新生成结果,且首次提出约束权重随上下文动态变化的假设。通过在15种英文前缀的文本补全任务(1000个高积极情感训练样本)和中文客服对话场景。

2025-10-19 20:19:02 843

原创 论文阅读笔记《CoDa: Constrained Generation based Data Augmentation for Low-Resource NLP》

本文提出一种面向低资源NLP的可控、高效且无需训练的数据增强技术;其核心是从低资源数据集实例中提取词汇、句法、语义(标签)、长度、概念五类启发式约束,将约束转化为自然语言指令,驱动现成的指令微调大型语言模型(LLM)生成新训练实例;该方法在11个数据集(涵盖序列分类SC、命名实体识别NER、问答QA 3类任务)上均优于基线方法,性能提升,且首次实现对数据增强生成过程的显式控制,具备跨域适应性,无需复杂解码约束或模型微调。训练-free:无需微调LLM或下游模型,直接使用现成的指令微调LLM,降低计算成本。

2025-10-18 17:24:59 925

原创 论文阅读笔记《Controllable Text Generation for Large Language Models: A Survey》

LLM生成文本质量很高,但实际应用中无法满足一些要求,例如金融或新闻报道领域,模型要避免误导性、歧视性的内容,还要精确匹配特定条件和用户需求(例如满足某种写作风格、生成富有诗意的文本等)。可控生成(CTG)确保生成的文本遵守预定义的控制条件,如安全,情感,主题一致性和语言风格,同时保持高标准的有用性,流畅性和多样性。CTG中的控制条件可以是显式或隐式的,显式包括明确的提示(eg.生成具有幽默性的文本),隐式包括指导模型符合某种条件(eg.客服服务系统中生成无毒无害无歧视的内容)

2025-10-15 19:42:32 908

原创 论文阅读笔记《Foundations of GenIR》

本文讨论了现代生成式AI模型对信息访问(information access,简称IA)系统的基本影响。跟传统AI相比,生成式AI的优势在于大规模训练和高级数据建模,它能生成更高质量、更像人话的回答,为IA范式的发展带来了全新的机遇。信息生成和信息合成。信息生成:生成直接满足用户需求的定制内容,提供即时响应。信息合成:利用生成式AI的能力来集成和重组现有信息,提供接地气(?原词是grounded)的响应并减轻模型幻觉等问题,适用于需要精确度和外部知识的场景。

2025-02-27 17:19:26 1735 1

原创 基于《From Matching to Generation: A Survey on Generative Information Retrieval》的生成式检索(GR)技术调研

最初,LLMs基于统计学和神经网络的语言模型,通过在大规模文本语料库上进行预训练,学习了语言的深层语义特征,大大提高了文本理解能力。生成式语言模型,特别是GPT系列,通过模型规模和参数数量的增加,显著提升了文本生成和理解的能力。LLMs主要分为两类:编码器-解码器模型和仅解码器模型。编码器-解码器模型(如T5和BART)将输入文本转化为向量表示,通过解码器基于这些表示生成输出文本,处理NLP任务时将其视为文本到文本的转换问题。

2025-02-21 10:05:12 2077

原创 NQD(Natural Questions Dataset)自然问答数据集简介

一组数据由 一个问题、谷歌搜索引擎前五个搜索结果中的维基百科页面、一个短回答、一个长回答 四部分组成,如果页面不包含问题答案,则长短回答标记为NULL。短回答是一个或多个实体,长回答大多是段落(占73%),其余的包括表格(19%)、表格行(1%)、列表(3%)或列表项(3%)。公开发布的版本包括307,373个带有单一标注的训练样本,7,830个带有5-way标注的开发数据样本,以及7,842个作为测试数据的5-way标注样本。“如果你使用我们的数据集发表了论文,请将论文的URL发送到。

2025-02-10 17:10:20 1063

原创 RAG技术调研

对的学习笔记RAG:Retrieval-Augmented Generation 检索增强生成RAG本质:让模型获取正确的Context(上下文),利用ICL (In Context Learning)的能力,输出正确的响应。

2024-12-31 09:47:05 1994

原创 论文阅读笔记:《Exploring False Hard Negative Sample in Cross-DomainRecommendation》

推荐中的负采样旨在为稀疏的用户-项目交互捕获信息丰富的负样本,以提高推荐性能。传统的负采样方法除了选择默认的随机样本外,还倾向于选择强负样本。然而,这些强负样本采样方法通常与假性强负样本(FHNS)作斗争,当用户与物品的交互尚未被观察到,就被选为负样本时,就会发生这种情况,而用户一旦接触到这个物品就会与它进行实际交互。这种FHNS问题可能会严重混淆模型训练,而大多数传统的硬负抽样方法并没有系统地探索和区分FHNS和HNS。

2024-08-10 08:35:41 808 3

山东大学计算机学院2023-2024第一学期信息技术与数据挖掘期末考试回忆版

山东大学计算机学院2023-2024第一学期信息技术与数据挖掘期末考试回忆版

2024-12-07

山东大学计算机学院2023-2024第一学期神经网络与深度学习期末考试回忆版

山东大学计算机学院2023-2024第一学期神经网络与深度学习期末考试回忆版

2024-12-07

山东大学计算机学院2023-2024第一学期认知科学与类脑计算期末考试回忆版

山东大学计算机学院2023-2024第一学期认知科学与类脑计算期末考试回忆版

2024-11-09

山东大学计算机学院2023-2024第一学期可视化期末考试回忆版

山东大学计算机学院2023-2024第一学期可视化期末考试回忆版

2024-10-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除