论文阅读笔记:《Exploring False Hard Negative Sample in Cross-DomainRecommendation》

 ⭐正文部分是原文翻译,引用部分是自己的思考和批注

 一些概念

负采样:基于一定的策略构造与正例相对的负例的过程

强负样本(informative hard negative samples,即HNS ):容易被判断成正样本的,能够带来较高信息增益的高质量负样本(相当于错题集😀)

负迁移:过度依赖跨领域项目候选可能会引入跨领域RHNS选择中的偏差

摘要

推荐中的负采样旨在为稀疏的用户-项目交互捕获信息丰富的负样本,以提高推荐性能。传统的负采样方法除了选择默认的随机样本外,还倾向于选择强负样本。然而,这些强负样本采样方法通常与假性强负样本(FHNS)作斗争,当用户与物品的交互尚未被观察到,就被选为负样本时,就会发生这种情况,而用户一旦接触到这个物品就会与它进行实际交互。这种FHNS问题可能会严重混淆模型训练,而大多数传统的硬负抽样方法并没有系统地探索和区分FHNS和HNS。为了解决这个问题,我们提出了一个新的模型不可知的真实硬负抽样(RealHNS)框架,专门用于跨域推荐(CDR),该框架旨在通过一般和跨域的真实硬负抽样选择器从所有HNS中发现假的并改进真实的。对于一般部分,我们依次进行粗粒度和细粒度的真实HNS选择器,并配备基于动态项的FHNS滤波器来寻找高质量的HNS。对于跨域部分,我们进一步设计了一种新的跨域HNS来缓解CDR中的负迁移,并通过基于用户的动态FHNS过滤器来发现相应的FHNS以保持其效果。

我们基于三种具有代表性的强负采样方法在四个数据集上进行了实验,并进行了广泛的模型分析、消融研究和普遍性分析。一致的效果提升表明了RealHNS的有效性、健壮性和通用性,它也很容易作为即插即用策略部署在实际系统中。源代码可在https://github.com/hulkima/RealHNS中获得。

假性强负样本:假如用户1没接触过商品a,自然不会有(用户1-商品a)的互动,但有可能一旦用户1接触到了商品a,就会产生互动,在这种情况下,如果仅仅因为当前没观察到互动,就把(用户1-商品a)作为负样本,那么它就是假性强负样本

1. 引言 

个性化推荐的目的是为用户提供合适的项目。与其他经典的监督学习任务一样,推荐模型也需要正样本和负样本进行训练[21,22,25]。然而,现实世界的推荐通常拥有超过数百万的用户和物品。个性化需求和数据稀疏性使得所有用户不可能与所有项目进行交互,从而获得全面的黄金正/负反馈矩阵[34]。在实际的推荐系统中,跨域推荐(CDR)是一种简单而有效的技术,可以将有用的正信号从源域传递到目标域[17,41]。人们还提出了许多策略(例如,数据增强和多行为推荐[38,49])来引入额外的正样本。与广泛关注的正样本不同,大多数作品只是将整个语料库中随机抽样的项目视为负样本(NS)[9,30,48]。然而,这种主流策略通常会为模型选择太容易区分的NS,从而降低了训练的挑战性和信息量[2,7,50]。

为了解决负样本过于简单的问题,在推荐中开始关注强负样本(HNS)。根据HNS的结构大致有两种类型。第一种HNS来自于真实的用户行为。在实践中广泛使用的典型强负抽样策略是将用户暴露但未点击的物品视为其强负反馈。然而,这种隐式负反馈通常具有大量的噪声(有时甚至包含一定的正偏好[40])。此外,所有暴露的物品都强烈依赖于在线推荐算法,这可能会有偏见。第二种HNS来源于强负采样。例如,DNS[44]在随机抽样的候选项目中选择最难的物品(即具有最大的预测用户-物品点击概率)作为HNS。

 我觉得就是,如果系统预测一个物品很有可能被点击,但没有被点击,它就是“难”物品,也就是(用户和它构成)强负样本

MixGCF[13]使用随机样本和正样本的插值作为HNS。AFT[11]采用对抗性训练构建HNS。一般来说,大多数现有的强负采样方法试图选择接近用户的项目或正抽样进行具有挑战性和信息性的训练。

现有两种构建强负样本的方法:

 MixGCF:使用随机样本和正样本的插值作为HNS

AFT:采用对抗性训练构建HNS

然而,在许多情况下,简单地选择HNS进行训练甚至可能会降低模型的性能。这主要是因为在自然反馈或负采样产生的HNS中,存在不可否认的假性强负样本(FHNS)比例[1,40]。FHNS表示正样本(但尚未观察到)被错误地选为HNS。FHNS有两个典型的原因:(a)有些点击是自发和不可预测的,超出了用户现有的偏好,以及(b)一些与被点击项目类似的项目也可能受到用户的欢迎。粗心地将FHNS(正)视为HNS(负)的训练模型将在很大程度上混淆整体优化。FHNS问题的根源在于用户-物品交互矩阵的不完整性,因为我们不能100%确定用户在物品呈现给用户之前一定会点击或不点击,也没有一个适用于所有用户的通用黄金标准。而且,越难的NS越有可能是假的NS。因此,从HNS中完美地发现所有虚假NS是极具挑战性的(甚至是不可能的)。不幸的是,大多数传统的强负采样策略并没有面对FHNS的挑战。有些作品[12]直接丢弃最困难的负项来降低FHNS。其他研究[13,44]通过只从随机项目子集(而不是整个语料库)中选择最难的项目间接减轻了FHNS的影响,因此所选的HNS不是绝对“难”的。此外,基于当前模型的能力,假NS和强NS的定义应该更加相对。在训练中动态平衡随机的、困难的和错误的NS也是必要的。

现有研究漏洞: 对FHNS的处理不佳,有的直接丢弃最困难的负项来降低FHNS,有的只从随机项目子集(而非整个语料库)中选择最难的项目间接减轻FHNS的影响(导致所选的HNS不是绝对“难”的)

在本工作中,我们试图探索在CDR中广泛存在的FHNS,了解它们的特点,并提高其质量。针对CDR中不同类型的FHNS,本文提出了一种有效、通用、简单的真实负采样(RealHNS)框架,以增强不同强负采样方法的有效性。具体来说,RealHNS旨在发现和完善两种类型的HNS,即通用HNS和跨域HNS,提供更多的信息量和挑战性的训练,同时防止模型受到虚假HNS的影响。

(1)在一般实强负样本选择器中,我们设计了粗粒度和细粒度的HNS选择器,以有效地找到HNS。我们提出了一个动态的基于项目的FHNS过滤器,它可以巧妙地丢弃与正项目过于相似的HNS。

(2)在跨域实硬负样本选择器中,我们创造性地提出了一种新的跨域HNS来解决CDR中的负迁移问题。相应地,我们发现一些用户受这种负迁移的影响较小。为此,我们设计了一种基于用户的动态FHNS滤波器,配合粗粒度和细粒度的HNS选择器,专门从用户的角度对跨域HNS进行细化。

(3)为了巧妙地平衡训练中的随机、强、假负样本,我们进一步设计了一个真实负样本选择的课程学习框架。

在实验中,我们系统地评估了我们提出的RealHNS在四个领域的有效性和通用性,采用了三种具有代表性的强负采样方法,RealHNS在这些领域取得了显著的改进。我们对多个数据集进行了广泛的消融研究和参数分析,以对CDR中的假NS和强NS有一个坚实而全面的理解。RealHNS还在经典CDR甚至单域推荐模型上进行了验证。本工作的贡献总结如下:

•据我们所知,我们是第一个系统地探索假性强负样本,并在CDR中提出通用和跨域真实HNS选择器。
•我们设计了一种新的基于项目的动态FHNS滤波器,并结合课程学习框架,可以采用不同的强负采样方法和不同的跨域/单域基础模型。提出了一种新型的跨域HNS,并重点介绍了与之相对应的专用于CDR的FHNS。
•我们的RealHNS基于不同的强负采样方法和基本模型实现了显著的改进。在实际应用中,它可以作为一种即插即用的、有效的、鲁棒的负采样策略。广泛的消融研究、通用性分析和模型分析使人们能够全面了解FHNS。

 2. 相关工作

跨域推荐。跨域推荐(Cross-domain recommendation, CDR)是利用其他域的辅助用户行为来缓解数据稀疏性问题的代表性方法之一[24,53]。经典的CDR方法一般采用多任务学习[52]、对齐约束[20,35]和对比学习[41]对跨领域知识迁移进行建模。跨域顺序推荐(CDSR)更多关注用户在CDR中的多域时间顺序行为[2,3,10,17,39,46]。DASL[17]设计了双重注意策略,强调用户多领域行为的相关性。DDGHM[46]构建全局动态图,共同利用局部和全局信息。C2DSR[2]通过相互信息最大化机制探索用户的单域和跨域偏好。然而,现有的CDR方法大多只关注与目标域随机选取的负样本之间的特征级跨域相关性,忽略了样本水平上的跨域差异。这些样本在一定程度上忽略了用户的源域偏好,这可能会导致性能次优。据我们所知,RealHNS是CDR中第一个负采样框架。

现有方法

传统跨域推荐:多任务学习、对齐约束,对比学习

跨域顺序推荐:更多关注用户在CDR中的多域时间顺序行为

DDGHM:构建全局动态图,共同利用局部和全局信息

C2DSR:通过相互信息最大化机制探索用户的单域和跨域偏好

不足之处

大多只关注与目标域随机选取的负样本之间的特征级跨域相关性,忽略了样本水平上的跨域差异,样本在一定程度上忽略了用户的源域偏好

推荐中的负抽样。负抽样在计算机视觉[14,33,43]、自然语言处理[18,37,45]、信息检索[8,26,27]和推荐系统[6,13,31,44]等领域得到了广泛的应用。在推荐中,由于抽样概率分布是否固定,现有的负抽样方法通常分为静态负抽样策略和强负抽样策略。

静态负抽样策略一般是根据预定义的概率分布对负实例进行抽样,包括均匀概率[4,29]和项目受欢迎程度[28]。UNS[29]以等概率随机抽取项目;NNCF[28]根据受欢迎程度为项目分配抽样权重;ENMF[4]设计了一种非采样训练策略,将所有的语料库都包含在训练中。然而,这些策略根据固定的分布概率进行负抽样,这使得它无法捕获用户和物品之间的偏好变化。

静态负采样: 根据预定义的概率分布(随机,项目受欢迎程度,直接选取所有项目……)对负实例进行采样,但无法捕捉用户偏好

强负抽样是提高模型准确率和训练效率的基本训练方法之一,它是为了选择信息量更大的负样本而提出的。早期的研究DNS[44]一般从随机选择的项目候选项中选择最难的项目作为HNS。然而,最近的研究利用项目相似性[19]、对抗学习[11,51]、启发式统计特征[6]、插值[13]和随机噪声[42]来选择HNS。SRNS[6]提出了一种基于方差的抽样函数,利用观测到的统计特征来区HNS;MixGCF[13]设计了图网络和正混合策略来合成信息HNS;AugNS[42]通过在表示中引入均匀噪声来实现NS增强,在保留大部分原始信息的同时带来语义差异;DNS+[31]通过利用额外的参数来适应不同的指标来调整采样难度,从而增强DNS[44]。然而,上述这些策略主要是为协同过滤而设计的,可能并不直接适用于CDR任务。此外,这些方法都是通过参数的选择来避免假阴性问题,这对于不同的数据集来说是不稳定和不可解释的,这给有效地探索和利用HNS带来了挑战。

 强负采样

早期:从随机选择的项目候选项中选择最难的项目作为HNS

最近:项目相似性[19]、对抗学习[11,51]、启发式统计特征[6]、插值[13]和随机噪声[42]……

SRNS[6]:设计基于方差的抽样函数,利用观测到的统计特征来区HNS

MixGCF[13]:设计了图网络和正混合策略来合成信息HNS

AugNS[42]:通过在表示中引入均匀噪声来实现NS增强

DNS+[31]:通过利用额外的参数来适应不同的指标来调整采样难度,从而增强DNS[44]

缺点:

1. 对于不同的数据集来说,参数选择是不稳定和不可解释的

2. 这些策略主要是为协同过滤而设计的,可能并不直接适用于CDR任务

3.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值